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0. Introduction



type IIB (or IKKT) matrix model   

SO(9,1) Lorentz symmetry

⚫ a nonperturbative formulation of superstring theory
      ``lattice gauge theory’’ of everything (matter, force and space-time) 

⚫ Unlike AdS/CFT, not only space but also time emerge
    as the eigenvalue distribution of the 10 bosonic matrices.

Ishibashi-Kawai-Kitazawa-Tsuchiya, 
Nucl.Phys.B 498 (1997) 467, hep-th/9612115 [hep-th]

maximal SUSY (incl. translation :                                 )



classical solutions

See Appendix A of
H. C. Steinacker, JHEP 02, 033,
arXiv:1709.10480 [hep-th].

⚫ Eq. of motion :

(Hermitian)

Eq. of motion :

Many classical solutions representing 
expanding space-time appear.

Add a Lorentz invariant “mass” term to the IKKT action.

Kim-J.N.-Tsuchiya, 1208.0711
Sperling-Steinacker 1901.03522



typical classical solutions

Hatakeyama-Matsumoto-J.N.-
Tsuchiya-Yosprakob,
PTEP 2020 (2020) 4, 043B10 

However, space-time dimensionality 
 is not determined at the classical level.

Eq. of motion :

⚫  

⚫  

⚫  

We have to investigate the partition function including the effects of fermions in 
the                                                lim. to see if (3+1)D expanding space-time appears.

⚫ classical

Quantum effects become important.
The role of SUSY.



partition function of the type IIB matrix model

pure phase factor

The partition function is NOT absolutely convergent.

Anagnostopoulos-Azuma-Hatakeyama-
Hirasawa-J.N.-Papadoudis-Tsuchiya, 
         in preparation

⚫ As a regularization, it was proposed to add convergence factors.

In fact, the partition function diverges in the             limit due to 
noncompact flat directions, and the cutoff artifact remains.

Asano, JN, Piensuk, Yamamori, in preparation

This breaks Lorentz symmetry!



What we do in this talk

⚫We study N=2 bosonic model with the cutoff nonperturbatively
  by 1/D expansion and the generalized thimble method (GTM).

⚫ In particular, “classicalization” occurs in the             limit
     due to an artifact of the Lorentz symmetry breaking cutoff.

⚫ We propose a new definition of the type IIB matrix model that 
respects Lorentz symmetry using Faddeev-Popov gauge fixing.

Once we understand the N=2 bosonic model completely, 
we just have to do the same things for larger N with SUSY.

⚫ Our results for the gauge-fixed model (obtained by GTM) 
     show very different behaviors.
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1. The need for gauge fixing in the toy model

Asano, JN, Piensuk, Yamamori, arXiv:2404. 14045



a toy model with Lorentz symmetry

Saddle points :

Z diverges due to flat directions

⚫ cutoff model

basis of traceless Hermitian matrices

Saddle points of this type
are related with each other
by Lorentz transformation.

type IIB matrix model



classicalization in the cutoff model

⚫ cutoff model

⚫ One can solve this model by introducing an auxiliary variable k

0

Partition function diverges for                

dominant saddle point



classicalization : an artifact of the cutoff 

cutoff surfaces

(Lorentz boosted) saddle point 

Classicalization occurs 
due to the cutoff artifact!

magnitude of the fluctuations



“gauge-fixing” the Lorenz symmetry

⚫ “Gauge fixing” condition :

⚫ In fact, the time-like region dominates over the space-like region.

The classicalization in the cutoff model is an artifact 
of Lorentz symmetry breaking that remains in the              limit.



a new definition of type IIB matrix model

⚫ “Gauge fixing” condition :

⚫ We still have to take care of the oscillating integral 
     by introducing the convergence factor:

Unlike the gauge-unfixed model, 
the partition function is finite in the             limit.



2. Classical solutions in N=2 bosonic model

Asano, JN, Piensuk, Yamamori, in preparation



classical solutions for the N=2 case

classical EOM :

For N=2, we can obtain all the real solutions up to                             sym.

(Pauli solution) (squashed Pauli solution)

diagonal subgroup of

remaining symmetries

unbroken

diagonal subgroup of

Nontrivial real solutions exist only for              .

(trivial solution)



comments on complex solutions 

⚫ In fact, there are many complex solutions.

(Pauli solution) (squashed Pauli solution)(trivial solution)

⚫ real solutions are exhausted (up to symmetries) by 

e.g.)

These are all irrelevant from the viewpoint of the Picard-Lefschetz theory.



Picard-Lefschetz theory

saddle point : 

Lefschetz thimbles

original integration contour

relevant saddles

irrelevant saddles
(cannot be reached by a flow)

(can be reached by a flow)

An oscillating integral can be evaluated by summing over 
all the thimbles associated with the relevant saddle points.

thimble

(multi-dimensional version of the steepest descent method)

(oscillating integral)

Due to Cauchy’s theorem



an important property of the flow

Real part of the action increases along the flow, 
 while the imaginary part is kept constant.

real positive !



complex saddles are irrelevant in the bosonic model

⚫ complex solutions

e.g.)

These are all irrelevant from the viewpoint of the Picard-Lefschetz theory.



3. 1/D expansion and MC studies of 
the cutoff model

Asano, JN, Piensuk, Yamamori, in preparation



1/D expansion

D appears here only as a parameter.

Hotta-J.N.-Tsuchiya (’98)

Used in the Euclidean model
without the mass term

For the moment, we omit
the convergence factors.



Large D saddles for N=2 bosonic model

Large D SPE :

For N=2, we can obtain all the relevant saddle points up to symmetries.

Pauli solution squashed Pauli solution

diagonal subgroup of

remaining symmetries

unbroken
diagonal subgroup of

trivial solution

identification

These are complex saddles, 
but not necessarily irrelevant.



Singularity on the real axis

original integration contour

v(+) saddlev(-) saddle (A=0) (Pauli)

singularity

This simply reflects the fact that the partition function is not 
well defined as it is.

Also true for the SO(D) invariant case !



The case of SO(D) symmetric model 
           obtained by replacing             

v(+) saddlev(-) saddle (A=0) (Pauli)

(large D)

consistent with the existence of the Pauli solution only for              . 



v(+) saddlev(-) saddle (A=0)

new saddle point appears near

The case of Lorentz symmetric model

Convergence factor acts on
space and time differently.

(spatial)

(temporal)



new saddle point appears near

Situation with the squashed Pauli

Convergence factor acts on
space and time differently.

(spatial)

(temporal)



Pauli has 3 nonvanishing internal d.o.f., 
while squashed Pauli has only 2.

Physical meaning of the divergence

Pauli

squashed Pauli

Note:     This does not mean that the model is ill defined. 
               E.g., the expectation value                       is finite. 

Boosted configurations dominate the partition function.
The cutoff artifact may well remain in the              limit.

The diverging observables :



Diverging 

real part

imag part



Classicalization for Pauli solution

⚫ The new saddle point approaches 

(classical result)

⚫ Fluctuations around the saddle point are suppressed at large D.



Hessian analysis around boosted Pauli

boost in 
1-direction

(Hessian)

cutoff surface:

allowed fluctuations:



Classicalization for Pauli at             



Hessian analysis around boosted squashed Pauli

boost in 
1-direction

(Hessian)

cutoff surface:

allowed fluctuations:



Classicalization for squashed Pauli at



4. MC studies of the “gauge-fixed” model

Chou, JN, Tripathi, in preparation



Saddle points in the gauge-fixed model

Using the SO(d) symmetry, we can impose :

The effect of gauge-fixing
appears here.

saddle point equation :

This represents the gauge fixing 
condition :

The FP determinant induces a mass-like term in the saddle point eq.



(“type” =                              )

Ansatz for the saddle points

A natural ansatz:

Squashed Pauli
type

Pauli
type

Trivial type
relevant saddles

irrelevant saddles



The behavior of the solutions at  

(Pauli solution) (squashed Pauli solution)(trivial solution)

Recall, however, that solutions that are obtained by Wick rotation 
from above are irrelevant from the viewpoint of the Picard-Lefschetz theory.

Pauli-type solution cannot be relevant. 



Simulation results for the gauge fixed model 
(by the generalized Lefschetz thimble method)

Thus, the dominant saddle point for             is different from the cutoff model !



But, this might not be the case
with SUSY and/or at large N.

Smooth behavior observed at    



Comparison with the SO(D) symmetric model                     
obtained by replacing  

Gauge fixed
SO(D-1,1) model 

SO(D) model 

SO(D) model 

Gauge fixed
SO(D-1,1) model 

trivial saddle dominates
in this region

very different for 



Ocsillating behavior in the SO(D) model at larger 

SO(D) model 

Perturbative calculations around
Pauli and squashed Pauli yield:

Due to the relevative phase,
interference occurs between P and sP.



5. Summary and discussions



Summary
⚫ The type IIB matrix model has diverging partition function 
    due to Lorentz symmetry (represented by a noncompact group).

⚫ The cutoff model suffers from a severe artifact due to Lorentz 
symmetry breaking.  (Classicalization at D=∞ Pauli, D=3 sPauli.)

⚫ In the cutoff model, the Pauli solution has more divergent partition 
function than the squashed Pauli, and hence dominates.

⚫We have proposed a new definition of type IIB matrix modeI 
without Lorentz symmetry breaking using the gauge fixing. 

    In the gauge-fixed model, Pauli solution cannot appear at large     .            

Gauge fixing is crucial in determining the dominant saddle point.

Pauli has 3 nonvanishing internal d.o.f., 
while squashed Pauli has only 2. 



Future prospects

⚫ larger N

⚫ SUSY case
1/D expansion cannot be applied (SUSY cannot be respected),
but numerical simulation is doable. N=2 case is on-going.

The computational cost of the generalized Lefschetz thimble method
grows with N as O(N6). But we may still do N=4,8,16,…

The Pfaffian seems to prefer collapsed configurations, but it becomes zero 
for configurations with not more than 2 extended directions. 

⚫ What happens in the SUSY case and/or at larger N.
Does (3+1)-dimensional expanding space-time emerge 
in the                                       limit ?

3d space ?

⚫ SUSY and large N

complex Langevin method (less flexible but cheaper)



空間３次元の
膨張

Recent results from complex Langevin simulation 

The extent in 9 directions v.s. time

5 directions are
suppressed by hand
for technical reasons.

The 4th direction becomes small at late times spontaneously !

Emergence of
expanding (3+1)D
space-time

Anagnostopoulos, Azuma, Hatakeyama, Hirasawa, 
JN, Papadoudis, Tsuchiya, in preparation(gauge-unfixed model )
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