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0. Introduction



type 1B (or IKKT) matrix model

Ishibashi-Kawai-Kitazawa-Tsuchiya,
Nucl.Phys.B 498 (1997) 467, hep-th/9612115 [hep-th]

® a nonperturbative formulation of superstring theory
“lattice gauge theory” of everything (matter, force and space-time)

1
Sp = —ZNtr([A“,A,,][A“,A”]) [O—dimensional reduction}

of 4D N =4 SYM

1
Sf —ENtI’(\Ua(C FM)QB[AH,, \Uﬁ])

N x N Hermitian matrices S0O(9,1) Lorentz symmetry

0,---,9) Lorentz vector
1,---,16) Majorana-Weyl spinor

Lorentzian metric n = diag(—1,1,---,1)
IS used to raise and lower indices.

® Unlike AdS/CFT, not only space but also time emerge
as the eigenvalue distribution of the 10 bosonic matrices.
maximal SUSY (incl. translation : Ay — Ay + ayul)




classical solutions
® Eq. of motion: [A”,[Ay,A,]] =0

Classical solutions are exhausted See Appendix A of
by the diagonal ones ([Au,Au] — O) H. C. Steinacker, JHEP 02, 033,

arXiv:1709.10480 [hep-th].

Add a Lorentz invariant “mass” term to the IKKT action.

1 1
Sm = —Enytr(AuA”):§N7{tr(Ao)2—tr(Az-)2}

Sh

1 1
SNtr(FF*) = = N{-2tr(Fp1)2 + tr(F;;)? Fuy = i[Au, AVl
4 (Fu ) 4 { (Fou) (Fiy) } [ g (Hermitign)

Eq. of motion: [A”,[Av, Ay]] —vA, =0

Many classical solutions representing Kim-J.N.Tsuchiva, 1208.0711
expanding space-time appear. Sperling-Steinacker 1901.03522




typical classical solutions

Hatakeyama-Matsumoto-J.N.-
: . v _
Eq- of motion : [A ) [AV: AM]] - ’YAM =0 Tsuchiya-Yosprakob,

PTEP 2020 (2020) 4, 043B10

® /A, = 0 is always a solution. 0.7
(trivial solution) 06 -

® Typical Hermitian A, solutions

show expanding behavior for y >0 = 04 1

but not for v < 0 ! o8k

0.2 +

® However, space-time dimensionality 01 -
is not determined at the classical level. 0

-1 —0.5 0 0.5
t

We have to investigate the partition function including the effects of fermions in
thel) N — oo, 2) v — +0 lim. to see if (3+1)D expanding space-time appears.

® Y= 0 is a "strong coupling” limit.

2 = [aadW D A=\ /|4, |
1 Quantum effects become important.

— /dA 6”2@44”‘12) 72 & 7 The role of SUSY.



partition function of the type |IB matrix model

—— /dA AW ¢t (Sp+Sm+5¢)

_ / d PFM(A)

pure phase factor polynomial in A

The partition function is NOT absolutely convergent.

® As aregularization, it was proposed to add convergence factors.

Anagnostopoulos-Azuma-Hatakeyama-

—— /dA ei(Sb‘i'Sm)PfM (A) Hirasawa-J.N.-Papadoudis-Tsuchiya,

in preparation

1
Sr(ﬁg) =35 N~ {@tl’(Ao)2 —I’(A@')z} This breaks Lorentz symmetry!

In fact, the partition function diverges in the € — O limit due to
noncompact flat directions, and the cutoff artifact remains.

Asano, JN, Piensuk, Yamamori, in preparation



What we do in this talk

® We study N=2 bosonic model with the cutoff nonperturbatively
by 1/D expansion and the generalized thimble method (GTM).

® [n particular, “classicalization” occurs in the € — 0 limit
due to an artifact of the Lorentz symmetry breaking cutoff.

e

® \We propose a new definition of the type IIB matrix model that
respects Lorentz symmetry using Faddeev-Popov gauge fixing.

® Our results for the gauge-fixed model (obtained by GTM)
show very different behaviors.

[ Once we understand the N=2 bosonic model completely, }
we just have to do the same things for larger N with SUSY.



A S e
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MC studies of the “gauge-fixed” model

Summary and discussions



1. The need for gauge fixing in the toy model

Asano, JN, Piensuk, Yamamori, arXiv:2404. 14045



a toy model with Lorentz symmetry

type lIB matrix model
N2-1
Ay = Z Az basis of traceless Hermitian matrices

a=1

a model of (N2 — 1) Lorentz vectors

a toy model with a single Lorentz vector =z, (u=0,1,---,d)
Z = / dx 6—%7(3:#;13“4—1)2 v >0

saddle points: (i) (2g)2 — (z;)2=1 ===  Saddle points of this type
are related with each other

(i) zu=0 by Lorentz transformation.

Z diverges due to flat directions

® cutoff model
Z€ — / dox 8_%7(33“33“-'_1)2_€(x0)2_6($i)2 lim ZE = 00

e—0



classicalization in the cutoff model

® cutoff model
1 K41 2 2 N2
Le :/d;}ge 2’7(3’"#33 +1)<—e(zo)—e(x;)

® One can solve this model by introducing an auxiliary variable k
1 dk do e 27k2+zk(ajpdcr;”—|-l) e(zg)2—e(x;)?

\/ 21y
d
——k2-|-zk 7r 0
e = \/—271’ fdk \/ik—l—e(\/—ik—l—e)
= N/ dk e~ Serr (k) Serr(k) = ;kQ ikt ; l0g(ik + ¢) + g l0g(—ik + €)
o dSerr (k) _1 —i-l—i 1 id 1 dominant sacidle point8d
dk v 2Qik+e 2 —ik+e 0) o, 2~ : 2 3
k %d—l—l —|—Z(d+1)3€ + O(e°)
_d+1 _d-1
Le~e 2 (XG) ~ € 2 Partition function diverges for ¢ — O
—_ v
= iy ((zpz” + 1))e
e — 0

— lim <:EM.CC'U“>5 =1 classicalization



classicalization : an artifact

Lo

0T, = cny

Ly

i+ xi=A
cutoff surfaces
"™ 22 4 a2 = A+ 6A

c?~sinh2(2¢)
cosh(20)

2
» lc| < e_"\ﬁ at large o
8

5S = Sz Hyuw(x)0m, =

of the cutoff

(Lorentz boosted) saddle point

(zg,xr1) = (cosho,sinh o)

(cosho)éxg + (sinho)dxry =0

5370 . Ssinh o
éx1)  A/cosh 2o \—cosho

magnitude of the fluctuations

= ~yatax¥
6.313“83’:;/
cosh? o —coshosinho
— cosheosinho sinh? o

Classicalization occurs
due to the cutoff artifact!




“gauge-fixing” the Lorenz symmetry

® “Gauge fixing” condition : minimize: (a:o)2 w.r.t. Lorentz tr.

- o) _ (cosho sinho) [z
:c; ~ \sinho cosho/ \z;

rox; = 0 for all j

d
Z = /dm e~ 27 (@urt+1)2 Arplz] [ 6(zozy)
j=1

Applz] =detQ ,  Q;; = (20)?0;; + =z,

® |n fact, the time-like region dominates over the space-like region.
(zj = 0) (0 = 0)

[ Zgf. = / dzg !xolde_%7{_(x0)2+1}2 J

Fluctuations exist for finite ~

The classicalization in the cutoff model is an artifact
of Lorentz symmetry breaking that remains in the € — O [imit.




a new definition of type IIB matrix model

® “Gauge fixing” condition : minimize: tr (4g)? w.r.t. Lorentz tr.

- A\ _ [cosho sinho (Ag
A} ~ \sinho cosho ) \ A

tr(AgA;) =0 for all j

- d A
7 = /d,AA,:p[A] [[ 6(tr (Ao4;))

j=1
Appl[A] = detQ, \Q;; = tr (Ag)20;; + tr (AiAj)/

\

® We still have to take care of the oscillating integral
by introducing the convergence factor:

S\e) = %N'y [ tr(Ag)? — e tr(4;)?)

-

Unlike the gauge-unfixed model,
the partition function is finite in the € — O [imit.




2. Classical solutions in N=2 bosonic model

Asano, JN, Piensuk, Yamamori, in preparation



classical solutions for the N=2 case
classical EOM : [A",[Au, Au]l] — vAu =0

For N=2, we can obtain all the real solutions up to sO(9,1) x su(2) sym.

v< 0| 4,=0

=1,2,3 o =1,2

A, =0 VEou n= A, = \f b=

v>0 a { otherwise otherwise
(trivial solution) (Pauli solution) (squashed Pauli solution)

remaining symmetries

SO(9,1) x SU(2) diagonal subgroup of diagonal subgroup of
unbroken SO(3) x SU(2) SO(2) x U(1)

Nontrivial real solutions exist only for v > O .




comments on complex solutions

® real solutions are exhausted (up to symmetries) by

v<0| A,=0

v>0| =0 \fou p=1,23 \fau p=1,2
otherwise otherwise
(trivial solution) (Pauli solution) (squashed Pauli solution)

® |n fact, there are many complex solutions.

{i\/gaﬂ n=1,2,3 Au:{z,/vgu w=1,2
0

otherwise 0 otherwise

eg) <0 A

AO = i\/g()']_ AO — \/70-1

v>0 |4 = ygoo Al:\["z
A2=\f03 A, = for ¢ > 2
A; = 0 fori>3

These are all irrelevant from the viewpoint of the Picard-Lefschetz theory.




thimble
wr; -

Picard-Lefschetz theory
(multi-dimensional version of the steepest descent method)
4 = / dx e—S(:c) S(x) € C  (oscillating integral)
RN

~relevant saddles
(can be reached by a flow)

05(z) _

z

05 (z(x; 0))

Lefschetz thimbles

saddle point : 0

¥ original integration contour
¥ irrelevant saddles

Due to Cauchy’s theorem (cannot be reached by a flow)

An oscillating integral can be evaluated by summing over
all the thimbles associated with the relevant saddle points.




an important property of the flow

Note that S(z) is complex!
_ 0S(2(w; 7)) 9z (w; o)
do o 8zk 80‘

_95(2(w; 0))08(2(z; o))
o 8zk 82%

05 (2(z; o)) |?
8zk

real positive !

-

Real part of the action increases along the flow,
while the imaginary part is kept constant.




complex saddles are irrelevant in the bosonic model

7 = / dA e—SIA] S[A] = —i(A% + ~A2)

Re S[A] = O for real configurations

Re S[A] > 0 required for complex saddles to be relevant

® complex solutions ReS[A] =0
i o, n=1,23 i oy n=1,2
eg) P)/<O A)UJ: g Ou M » £ ANZ oM
0 otherwise 0 otherwise
AO = 3 %O’l AO — \/70-1
v>0 |4 = ygoo Al:\f"z
Ay = /§03 A, = for i > 2
A, = 0 for:>3

These are all irrelevant from the viewpoint of the Picard-Lefschetz theory.




3. 1/D expansion and MC studies of
the cutoff model

Asano, JN, Piensuk, Yamamori, in preparation



1/D expansion

Used in the Euclidean model

N2-1 o 1 without the mass term
Au — Z AZ t* ha,b ~ AuAM Hotta-J.N.-Tsuchiya ('98)
a=1
. i( A% A2 For the moment, we omit
4 = fdA € (AT 474%) the convergence factors.
= [ dn [ aaelhHhATAD

ih2—Ljogdet K B} 1
/ dhe ’ ) hap = ﬁhab

D appears here only as a parameter.

At large D with fixed 7,

9Sestlh] e
a;ju =0 mm) h+iK[h] =0




Large D saddles for N=2 bosonic model
largeDSPE: K +iK[R]™! =0

For N=2, we can obtain all the relevant saddle points up to symmetries.

")/<O ?L:’U(_)]_

v >0 h=ov()1 h=o(t)1 h = #diag (1,1,5/12)
o»(E) = i:}, (1 + 1+ f%;) These are complex saddles,
v but not necessarily irrelevant.
remaining symmetries
SU(2) SU(2) U(1)
identification I I I
trivial solution Pauli solution squashed Pauli solution

SO(9,1) x@ diagonal subgroup of diagonal subgroup of
unbroken SO(3) @ SO(2) x@



Singularity on the real axis

B:fy(_)]_ E:U(+)1
vi)saddle (A=0) vitisaddle (Pauli)

original integration contour

1 singularity

hsing —

N |21

This simply reflects the fact that the partition function is not
well defined as it is.
Also true for the SO(D) invariant case !



The case of SO(D) symmetric model
obtained by replacing Ag =iAp

~ 32D
_3.D52 2
Z() ~ 5 P7 (%) (large D)
h=v(7)1 h=v1t)1

vl saddle (aA=0) vitisaddle (Pauli)

SR E S{) = —%queia {tr(Ap)? + tr(4;)?}

The v(+) saddle becomes relevant and

the associated partition function becomes finite in the € — 0 limit.

For 7 < 0, the v(+) saddle becomes irrelevant

since the singularity is shifted in the opposite direction.
consistent with the existence of the Pauli solution only for ¥ > O.



The case of Lorentz symmetric model

=1 h=qo(t)1
v saddle (a=0) vi*) saddle becomes irrelevant!

Convergence factor acts on
space and time differently.

s = %ny [e=tr(Ag)? — e~ tr(A;)?)

new saddle point appears near fsing = -1

N | 21

3 3
Zpauli ~ 6_§D(><56) ~ 5_(§D_6) diverges as € — O

The new (relevant) saddle point appears,
and the partition function diverges!



Situation with the squashed Pauli

h i = #diag (1,1,;2)
5

This becomes irrelevant!

7> 0

..... £ (temporal
E P ) [Convergence factor acts on}

space and time differently.

E (spatial
S8 = 2 Ny {eietr(4o) — e~ tr(4)2)

: ~ o s 1
new saddle point appears near hging = cl14 (2¢—7)diag (1, 1,~—2)
5

3 =
c= (74 ]1-=
12 y

ZS—PauIi ~ E_D(XE?)) ~ g_(D_?’) diverges as ¢ — 0

The new (relevant) saddle point appears,
and the partition function diverges!



Physical meaning of the divergence

7 —p Note: This does not mean that the model is ill defined.
~ & E.g., the expectation value (tr (A,A4%)) is finite.
3
Pauli p~ ED — 06 » Partition function divegerges
faster for Pauli for D 2 6

squashed Pauli p~ D —3

Pauli has 3 nonvanishing internal d.o.f,,
while squashed Pauli has only 2.

This implies that Pauli thimble dominates
in the cutoff model at v > 0 for D > 6.

The diverging observables :

1 1 0
<—tr (A0)2> ~ — . log Z ~ P
N 2N~y et Oe 2N~y e e

Boosted configurations dominate the partition function.
The cutoff artifact may well remain in the € — 0O limit.



Diverging  (ytr(40?) ~ o~

2N~ el e

<%tr (AO)2> x 2N e D = 4, squashed Pauli v = 1.5

1.5} - i -
realpatgkff,fff s
/
P
< .
= p = D — 3 (prediction by h theory) . repus
% Im D=4
S a5 — Re D=4 Best fitting
& ~ Im D=4 Best fitting
imag part _—
0.0 |
00 o1 02 03 04 o5

(7

Consistent with Z ~ ¢~ (P—3)



Classicalization for Pauli solution

qu

® The new saddle point approaches hs. = 1

.;

Lt A Ak) = (trF) ~

1
VDN

o0 |

® Fluctuations around the saddle point are suppressed at large D.

1 1 3.
lim ——(tr A AR = g7 (classical result)

D—oo /D
A, _{\fau p=1,2,3

0 otherwise

Classicalization for Pauli occurs at D = oo.



Hessian analysis around boosted Pauli

4

AO = %sinh o001
faﬂ u=1,2,3 A = %coshaal

{ otherwise - { A2 = /L o>

boost in Az = \[Los
1-direction A, = 0 fori>4

925 (A)
55 = 5AC H®(A)sA pab — 9P -
L p,v( ) SA, Qv 3Aﬁ8A?, (HeSSIan)
cutoff surface: tr (Ag)? + tr (4;)? =

allowed fluctuations: tr (ApdAg) + tr (A;64;) =0

Eigenvalues of H in the (3D — 1)-dimensional subspace

2 finite (contributes to quantum corrections)
4 divergent (suppressed in the ¢ — 0 limit)
(3D —7) zeroes (corresponding to broken symmetries)

Classicalization occurs in the large D limit.



Classicalization for Pauli at D = oo

0.95
0.90|
A 085
N
s
-HQ
>
v |
&’
0.80|
D =15
D =20

extrapolation to D = oo %

: 3. -
classical value: == 0.75 (for 4 =2)

0o o1 02 "3 " o4 05



Hessian analysis around boosted squashed Pauli

4

Ag = /Zsinhooq
oy p=172 4
{\f g _ Aq Fcosho oy

otherwise {
boost in Ay = %02
1-direction A; = 0 foret>3
925 (A)
58 = 6A% H®(A)5AY pgab = 92 -
L p,v( ) SA, Qv 3Aﬁ8A?, (HeSSIan)
cutoff surface: tr (Ag)? 4+ tr (4;)% = A

allowed fluctuations: tr (ApdAg) + tr (A;64;) =0

Eigenvalues of H in the (3D — 1)-dimensional subspace

(D —3) finite (contributes to quantum corrections)
4 divergent (suppressed in the ¢ — 0 limit)
(2D — 2) zeroes (corresponding to broken symmetries)

Classicalization for squashed pauli occurs only at D = 3.



Classicalization for squashed Pauliat D = 3

0.8 D =3 (Re) Y= 1.5

< — - - - ——— |

D = 4 (Re) —

06 :

1 i

lassical value (Re): 5 = 0.75 (fory=1.5) |

04 :

A ——— R |

<, D=4 (Im) —— — . f

—|= ]

v /classical value (Im): O
0.0
D=3 (Im)

—0.2}
~0.4!

0.00 0.05 0.10 0.15 0.20 0.25 0.30

€

Classicalization occurs only at D = 3.



4. MC studies of the “gauge-fixed” model

Chou, JN, Tripathi, in preparation



Saddle points in the gauge-fixed model

d
7 = /dA ¢! (Sp+Sm) AFP[A][H 5(”(140143'))}

j=1

App[A] = det$2 , This represents the gauge fixing
€ij =tr(A0)%0i; +tr(4id;)  condition : tr (494;) =0 for all j

saddle point equation:
[Av, [AY, Apll = A + %WM/T" (Q_l

02 )
0Ay

Using the SO(d) symmetry, we can impose : tr (A4;A;) =0 for i # j

L . . The effect of gauge-fixing
Av, 1A% Aull = (v + mu appears here.

2 d x, has to be determined
K; — , Ko = K; . M
"ON{tr(Ag)2 4 tr (A;)?} Z; ' in a self-consistent manner.

The FP determinant induces a mass-like term in the saddle point eq.

The v — 0 limit may be smooth!




Ansatz for the saddle points

. 2
[Av, [A7, Apll = (v + z@)A“ T N{r(Ag2 (42 0T 2 i

i=1
A natural ansatz: Ao ==zo01, Ag # 0 is required for finite ~
d=>4 Ay =vyoz, since otherwise Agp[A] = 0.
Ap =zo03

A; =0 for 3< 57 <d
solutions at v > 0O (“type” = v — oo behavior)

tr (Ag)?

. {--\
irrelevant saddles —> '@ (y or z — 0)

/

@: Pauli iSquashed Pauli

@ type | 1type
Trivial type (- Lo
(5.5 2 > 0) §£ relevant saddles —— E‘,: S

tr (A ,AY)



The behavior of the solutions at 7 — o©

For v — oo, the solutions reduce to
those of the gauge-unfixed model

=1,2,3 o =1,2
A, =0 A, = \fa“ = \f o H=
v > O a K { 0 otherwise otherwise
(trivial solution) (Pauli solution) (squashed Pauli solution)

Recall, however, that solutions that are obtained by Wick rotation
from above are irrelevant from the viewpoint of the Picard-Lefschetz theory.

(A = \fﬁl Ag \/701
Vg2 e
\/703 A;

for ¢ > 2
for ¢ >3

NN

N e

Il
=
Il

>
|

Thus at large ~, relevant saddles should have Ag — O.

Pauli-type solution cannot be relevant.




Simulation results for the gauge fixed model
(by the generalized Lefschetz thimble method)

1
Re <Ntr (A”A“)>
~ > 0 region is described

3 by a saddle point that reduces to
. squashed Pauli as v — oo.

D=5

v < 0 region is described i
by a saddle point that reduces to 2:_ \
trivial saddle as v — —oo. ]

—<£ [~ It continues to Wick-rotated ix Pauli
. at v < 0, and hence becomes irrelevant.

_3:—

Thus, the dominant saddle point for ¥ > O s different from the cutoff model !




Smooth behavior observed at v ~ O
D=5 Re <%tr(AMA“)>

v — 0 limit seems to be smooth
at least in this model

But, this might not be the case
with SUSY and/or at large N.

Stokes phenomenon seems to occur at v = 0.
(Relevant saddle point changes.)




Comparison with the SO(D) symmetric model
obtained by replacing Ag = iAp

1 2
Re[—1trA,°]
VD

O Ad model 6’
(O gauge fixed AO model
S
D=5 4 SO(D) model
3
2 5 @vi
: H. ® Gauge fixed
gt Te=® SO(D-1,1) model
@@@@‘@‘@?@‘@.‘ : R ’
-2 -1 » 1 2
O Ad model 6
O gauge e A0 moce 5 very different for v > O
_ D=5 4
equivalence for v < —2
3 SO(D) model
trivial saddle dominates 2 / Gauge fixed
in this region Lssse et ®1QD .. . /SO(D-l,l) model
2 oo s sy
-1




Ocsillating behavior in the SO(D) model at larger ;)7

ReftrA,“] o
12 — squashpauli = j ~ 7.83 D e 5 , 1 O : 2 O Re[EtrAf]
| s * SO(D) model

D=0
— hitheory 5
ikt

()il il o W ldud i bbb

10000 20000 30000 40000 50000 M€

Perturbative calculations around M ;
Pauli and squashed Pauli yield: .  —

3(D+1 ; .
, s A Prediction at D = o
Pauli = _ _ Imgl—=rA, )
23(D—4)r (g) r (%) r (%) ... Desdribed by a saddle point,

which becomes Pauli as v — o

71-3D2+2f}/%_ @ o l and the trivial one as v — —oc.
1.5
D=1

Due to the relevative phase,
interference occurs between P and sP.

At D = oo, Pauli dominates over s-Pauli. 05 '



5. Summary and discussions



summary

® The type |IB matrix model has diverging partition function
due to Lorentz symmetry (represented by a noncompact group).

® In the cutoff model, the Pauli solution has more divergent partition
function than the squashed Pauli, and hence dominates.

Pauli has 3 nonvanishing internal d.o.f,,
while squashed Pauli has only 2.

® The cutoff model suffers from a severe artifact due to Lorentz
symmetry breaking. (Classicalization at D=o< Pauli, D=3 sPauli.)

® We have proposed a new definition of type IIB matrix model
without Lorentz symmetry breaking using the gauge fixing.
In the gauge-fixed model, Pauli solution cannot appear at large”Y .

Gauge fixing is crucial in determining the dominant saddle point.




Future prospects

® \What happens in the SUSY case and/or at larger N.

Does (3+1)-dimensional expanding space-time emerge
inthe 1) N = 00,2) v — 0 limit?

® SUSY case

1/D expansion cannot be applied (SUSY cannot be respected),
but numerical simulation is doable. N=2 case is on-going.

® |arger N

The computational cost of the generalized Lefschetz thimble method
grows with N as O(N®). But we may still do N=4,8,186,...

® SUSY and large N

The Pfaffian seems to prefer collapsed configurations, but it becomes zero
for configurations with not more than 2 extended directions.

» 3d space ? complex Langevin method (less flexible but cheaper)



Recent results from complex Langevin simulation

Anagnostopoulos, Azuma, Hatakeyama, Hirasawa,

(gauge_unﬂxed model ) JN, Papadoudis, Tsuchiya, in preparation

The extent in 9 directions v.s. time Emergence of
! | | ﬁ expanding (3+1)D
JE R space-time
51 :;‘ 5 :. | N — 96
—~~ 4 e _
S T . v =4
\I'—: 3 i ¢ -‘i‘ m. | .
~ i ms = 3.5
~ 2 i LI ‘;.. |
" hos d=>5, 5:]_6
o "
1+t .f :m.. | . .
it } 5 directions are
tmpese |

suppressed by hand
for technical reasons.

The 4th direction becomes small at late times spontaneously !



	スライド 1: ローレンツ対称性を保つタイプIIB行列模型の新しい定義とその必要性
	スライド 2: 0. Introduction
	スライド 3
	スライド 4: classical solutions
	スライド 5: typical classical solutions
	スライド 6: partition function of the type IIB matrix model
	スライド 7: What we do in this talk
	スライド 8
	スライド 9: 1. The need for gauge fixing in the toy model
	スライド 10: a toy model with Lorentz symmetry
	スライド 11: classicalization in the cutoff model
	スライド 12:  classicalization : an artifact of the cutoff 
	スライド 13: “gauge-fixing” the Lorenz symmetry
	スライド 14: a new definition of type IIB matrix model
	スライド 15: 2. Classical solutions in N=2 bosonic model
	スライド 16: classical solutions for the N=2 case
	スライド 17: comments on complex solutions 
	スライド 18: Picard-Lefschetz theory
	スライド 19: an important property of the flow
	スライド 20: complex saddles are irrelevant in the bosonic model
	スライド 21: 3. 1/D expansion and MC studies of the cutoff model
	スライド 22: 1/D expansion
	スライド 23: Large D saddles for N=2 bosonic model
	スライド 24: Singularity on the real axis
	スライド 25:           The case of SO(D) symmetric model             obtained by replacing             
	スライド 26
	スライド 27
	スライド 28: Physical meaning of the divergence
	スライド 29: Diverging 
	スライド 30: Classicalization for Pauli solution
	スライド 31: Hessian analysis around boosted Pauli
	スライド 32: Classicalization for Pauli at             
	スライド 33: Hessian analysis around boosted squashed Pauli
	スライド 34: Classicalization for squashed Pauli at
	スライド 35: 4. MC studies of the “gauge-fixed” model
	スライド 36: Saddle points in the gauge-fixed model
	スライド 37: Ansatz for the saddle points
	スライド 38:      The behavior of the solutions at  
	スライド 39: Simulation results for the gauge fixed model (by the generalized Lefschetz thimble method)
	スライド 40: Smooth behavior observed at    
	スライド 41: Comparison with the SO(D) symmetric model                     obtained by replacing  
	スライド 42: Ocsillating behavior in the SO(D) model at larger 
	スライド 43: 5. Summary and discussions
	スライド 44: Summary
	スライド 45: Future prospects
	スライド 46

