ローレンツ対称性を保つタイプIIB行列模型の 新しい定義とその必要性

西村 淳 (KEK, 総研大)

研究会「離散的手法による場と時空のダイナミクス」 東工大、大岡山キャンパス 2024年9月2日(月)~5日(木)

Ref.) Asano, JN, Piensuk, Yamamori, arXiv:2404. 14045 Asano, JN, Piensuk, Yamamori, in preparation Chou, JN, Tripathi, in preparation

0. Introduction

type IIB (or IKKT) matrix model

Ishibashi-Kawai-Kitazawa-Tsuchiya, Nucl.Phys.B 498 (1997) 467, hep-th/9612115 [hep-th]

a nonperturbative formulation of superstring theory
 ``lattice gauge theory'' of everything (matter, force and space-time)

$$S_{\mathsf{b}} = -\frac{1}{4} N \operatorname{tr}([A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}])$$

$$S_{\mathsf{f}} = -\frac{1}{2} N \operatorname{tr}(\Psi_{\alpha}(\mathcal{C} \Gamma^{\mu})_{\alpha\beta}[A_{\mu}, \Psi_{\beta}])$$

$$\begin{pmatrix} \text{0-dimensional reduction} \\ \text{of 4D } \mathcal{N} = 4 \text{ SYM} \end{pmatrix}$$

 $N \times N$ Hermitian matrices SO(9,1) Lorentz symmetry

 $\begin{array}{ll} A_{\mu} & \mu = 0, \cdots, 9) & \text{Lorentz vector} \\ \Psi_{\alpha} & (\alpha = 1, \cdots, 16) & \text{Majorana-Weyl spinor} \end{array}$

 \longrightarrow Lorentzian metric $\eta = \text{diag}(-1, 1, \dots, 1)$ is used to raise and lower indices.

 Unlike AdS/CFT, <u>not only space but also time emerge</u> as the eigenvalue distribution of the 10 bosonic matrices.

maximal SUSY (incl. translation : $A_{\mu} \mapsto A_{\mu} + \alpha_{\mu} \mathbf{1}$)

classical solutions

• Eq. of motion : $[A^{\nu}, [A_{\nu}, A_{\mu}]] = 0$

Classical solutions are exhausted by the diagonal ones $([A_{\mu}, A_{\nu}] = 0)$ See Appendix A of H. C. Steinacker, JHEP 02, 033, arXiv:1709.10480 [hep-th].

Add a Lorentz invariant "mass" term to the IKKT action.

$$S_{\rm m} = -\frac{1}{2} N \gamma \operatorname{tr}(A_{\mu} A^{\mu}) = \frac{1}{2} N \gamma \left\{ \operatorname{tr}(A_{0})^{2} - \operatorname{tr}(A_{i})^{2} \right\}$$
$$S_{\rm b} = \frac{1}{4} N \operatorname{tr}(F_{\mu\nu} F^{\mu\nu}) = \frac{1}{4} N \left\{ -2 \operatorname{tr}(F_{01})^{2} + \operatorname{tr}(F_{ij})^{2} \right\}$$

$$\begin{bmatrix} F_{\mu\nu} = i \left[A_{\mu}, A_{\nu} \right] \\ \text{(Hermitian)} \end{bmatrix}$$

Eq. of motion : $[A^{\nu}, [A_{\nu}, A_{\mu}]] - \gamma A_{\mu} = 0$

Many classical solutions representing expanding space-time appear.

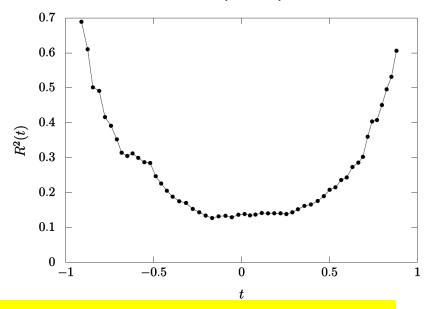
Kim-J.N.-Tsuchiya, 1208.0711 Sperling-Steinacker 1901.03522

typical classical solutions

Eq. of motion :
$$[A^{\nu}, [A_{\nu}, A_{\mu}]] - \gamma A_{\mu} = 0$$

- $A_{\mu} = 0$ is always a solution. (trivial solution)
- Typical Hermitian A_{μ} solutions show expanding behavior for $\gamma > 0$ but <u>**not**</u> for $\gamma < 0$!
- However, space-time dimensionality is not determined at the classical level.

Hatakeyama-Matsumoto-J.N.-Tsuchiya-Yosprakob, *PTEP* 2020 (2020) 4, 043B10



We have to investigate the partition function including the effects of fermions in the 1) $N \rightarrow \infty$, 2) $\gamma \rightarrow +0$ lim. to see if (3+1)D expanding space-time appears.

•
$$\gamma = 0$$
 is a "strong coupling" limit
 $Z = \int dA e^{i(A^4 + \gamma A^2)} \qquad A_\mu = \sqrt{|\gamma|} \tilde{A}_\mu$
 $= \int dA e^{i\gamma^2(\tilde{A}^4 + \tilde{A}^2)} \qquad \gamma^2 \Leftrightarrow \frac{1}{\hbar}$

Quantum effects become important. The role of SUSY. partition function of the type IIB matrix model

$$Z = \int dA \, d\Psi \, e^{i(S_{\rm b} + S_{\rm m} + S_{\rm f})}$$

=
$$\int dA \, e^{i(S_{\rm b} + S_{\rm m})} \, \text{Pf}\mathcal{M}(A)$$

pure phase factor polynomial in A
The partition function is NOT absolutely convergent.

As a regularization, it was proposed to add convergence factors.

$$Z = \int dA \, e^{i(S_{\rm b} + S_{\rm m})} \mathsf{Pf}\mathcal{M}(A) \qquad \text{Hiras}$$

Anagnostopoulos-Azuma-Hatakeyama-Hirasawa-J.N.-Papadoudis-Tsuchiya, in preparation

 $S_{\rm m}^{(\varepsilon)} = \frac{1}{2} N\gamma \left\{ e^{i\varepsilon} \operatorname{tr}(A_0)^2 - e^{-i\varepsilon} \operatorname{tr}(A_i)^2 \right\}$ <u>This breaks Lorentz symmetry!</u>

In fact, the partition function diverges in the $\varepsilon \rightarrow 0$ limit due to noncompact flat directions, and the cutoff artifact remains.

Asano, JN, Piensuk, Yamamori, in preparation

What we do in this talk

- We study N=2 bosonic model with the cutoff nonperturbatively by 1/D expansion and the generalized thimble method (GTM).
- In particular, "classicalization" occurs in the $\epsilon \rightarrow 0$ limit due to an artifact of the Lorentz symmetry breaking cutoff.

 Our results for the gauge-fixed model (obtained by GTM) show very different behaviors.

Once we understand the N=2 bosonic model completely, we just have to do the same things for larger N with SUSY.

Plan of the talk

- 0. Introduction
- 1. The need for "gauge-fixing" in the toy model
- 2. Classical solutions in N=2 bosonic model
- 3. 1/D expansion and MC studies of the cutoff model
- 4. MC studies of the "gauge-fixed" model
- 5. Summary and discussions

1. The need for gauge fixing in the toy model

Asano, JN, Piensuk, Yamamori, arXiv:2404. 14045

a toy model with Lorentz symmetry

type IIB matrix model

 $A_{\mu} = \sum_{a=1}^{N^2 - 1} A_{\mu}^{a} t^{a}$ basis of traceless Hermitian matrices a model of $(N^2 - 1)$ Lorentz vectors

a toy model with a single Lorentz vector x_{μ} ($\mu = 0, 1, \dots, d$) $Z = \int dx \, e^{-\frac{1}{2}\gamma(x_{\mu}x^{\mu}+1)^2}$ $\gamma > 0$ Saddle points : (i) $(x_0)^2 - (x_i)^2 = 1$ \implies Saddle points of this type

Saddle points : (i) $(x_0)^2 - (x_i)^2 = 1$ (ii) $x_\mu = 0$ Saddle points of this type are related with each other by Lorentz transformation.

Z diverges due to flat directions

• cutoff model

$$Z_{\varepsilon} = \int dx \, e^{-\frac{1}{2}\gamma(x_{\mu}x^{\mu}+1)^2 - \varepsilon(x_0)^2 - \varepsilon(x_i)^2} \qquad \lim_{\varepsilon \to 0} Z_{\varepsilon} = \infty$$

classicalization in the cutoff model

• cutoff model

 $\langle k \rangle$

$$Z_{\varepsilon} = \int dx \, e^{-\frac{1}{2}\gamma(x_{\mu}x^{\mu}+1)^2 - \varepsilon(x_0)^2 - \varepsilon(x_i)^2}$$

• One can solve this model by introducing an auxiliary variable k

$$Z_{\epsilon} = \frac{1}{\sqrt{2\pi\gamma}} \int dk \, dx \, e^{-\frac{1}{2\gamma}k^2 + ik(x_{\mu}x^{\mu} + 1) - \epsilon(x_0)^2 - \epsilon(x_i)^2}$$

$$Z_{\epsilon} = \frac{1}{\sqrt{2\pi\gamma}} \int dk \, e^{-\frac{1}{2\gamma}k^{2} + ik} \sqrt{\frac{\pi}{ik + \epsilon}} \left(\sqrt{\frac{\pi}{-ik + \epsilon}} \right)^{d}$$

$$= \mathcal{N} \int dk \, e^{-S_{\text{eff}}(k)} \qquad S_{\text{eff}}(k) = \frac{1}{2\gamma}k^{2} - ik + \frac{1}{2}\log(ik + \epsilon) + \frac{d}{2}\log(-ik + \epsilon)$$

$$0 = \frac{dS_{\text{eff}}(k)}{dk} = \frac{1}{\gamma}k - i + \frac{i}{2}\frac{1}{ik + \epsilon} - \frac{id}{2 - ik + \epsilon}$$

$$dominant saddle point$$

$$k^{(0)} \simeq i\frac{d - 1}{d + 1}\epsilon + i\frac{8d}{(d + 1)^{3}}\epsilon^{2} + O(\epsilon^{3})$$

$$Z_{\epsilon} \sim \epsilon^{-\frac{d+1}{2}} (\times \epsilon) \sim \epsilon^{-\frac{d-1}{2}}$$

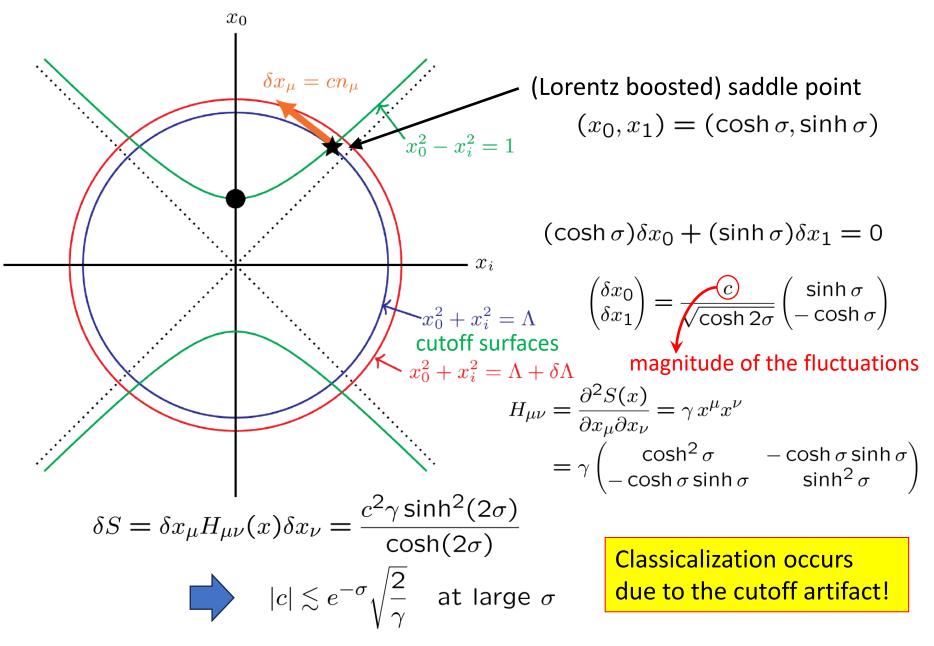
1/

Partition function diverges for $\epsilon \rightarrow 0$

$$= i\gamma \langle (x_{\mu}x^{\nu} + 1) \rangle_{\epsilon}$$

$$\rightarrow 0 \qquad - \lim_{\varepsilon \to 0} \langle x_{\mu}x^{\mu} \rangle_{\varepsilon} = 1 \qquad \text{classicalization}$$

classicalization : an artifact of the cutoff



"gauge-fixing" the Lorenz symmetry

• "Gauge fixing" condition : minimize: $(x_0)^2$ w.r.t. Lorentz tr. $\begin{pmatrix} x'_0 \\ x'_j \end{pmatrix} = \begin{pmatrix} \cosh \sigma & \sinh \sigma \\ \sinh \sigma & \cosh \sigma \end{pmatrix} \begin{pmatrix} x_0 \\ x_j \end{pmatrix}$ $x_0 x_j = 0$ for all j $Z = \int dx e^{-\frac{1}{2}\gamma(x_\mu x^\mu + 1)^2} \Delta_{\mathsf{FP}}[x] \prod_{j=1}^d \delta(x_0 x_j)$ $\Delta_{\mathsf{FP}}[x] = \det \Omega$, $\Omega_{ij} = (x_0)^2 \delta_{ij} + x_i x_j$

• In fact, the time-like region dominates over the space-like region. $(x_i = 0)$ $(x_0 = 0)$

$$\begin{aligned} Z_{g.f.} &= \int dx_0 |x_0|^d e^{-\frac{1}{2}\gamma \{-(x_0)^2 + 1\}^2} \\ &- \langle x_\mu x^\mu \rangle = 1 + \underbrace{\frac{d-1}{2\gamma}}_{Pluctuations exist for finite \gamma} \end{aligned}$$

The classicalization in the cutoff model is an artifact of Lorentz symmetry breaking that remains in the $\varepsilon \rightarrow 0$ limit.

a new definition of type IIB matrix model

• "Gauge fixing" condition : minimize: $tr(A_0)^2$ w.r.t. Lorentz tr.

$$\begin{pmatrix} A'_{0} \\ A'_{j} \end{pmatrix} = \begin{pmatrix} \cosh \sigma & \sinh \sigma \\ \sinh \sigma & \cosh \sigma \end{pmatrix} \begin{pmatrix} A_{0} \\ A_{j} \end{pmatrix}$$

tr $(A_{0}A_{j}) = 0$ for all j

$$Z = \int dA e^{i(S_{b} + S_{m})} \Delta_{\mathsf{FP}}[A] \prod_{j=1}^{d} \delta(\mathsf{tr} (A_{0}A_{j}))$$
$$\Delta_{\mathsf{FP}}[A] = \det \Omega , \quad \Omega_{ij} = \mathsf{tr} (A_{0})^{2} \delta_{ij} + \mathsf{tr} (A_{i}A_{j})$$

 We still have to take care of the oscillating integral by introducing the convergence factor:

$$S_{\rm m}^{(\varepsilon)} = \frac{1}{2} N \gamma \left\{ e^{i\varepsilon} \operatorname{tr}(A_0)^2 - e^{-i\varepsilon} \operatorname{tr}(A_i)^2 \right\}$$

Unlike the gauge-unfixed model, the partition function is finite in the $\varepsilon \rightarrow 0$ limit.

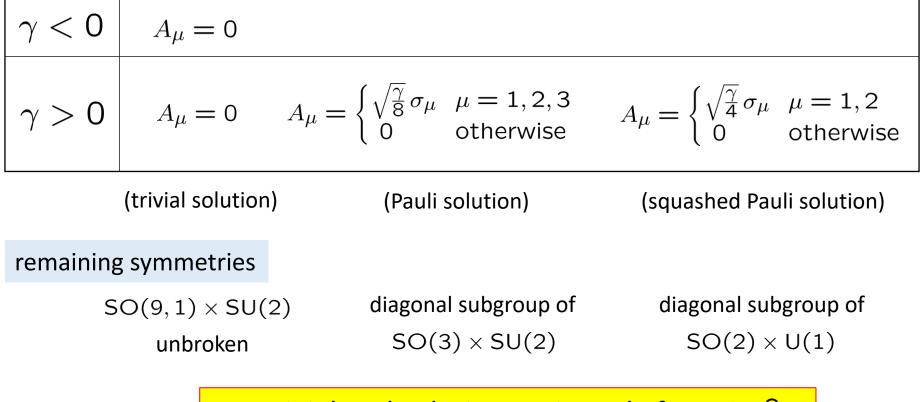
2. Classical solutions in N=2 bosonic model

Asano, JN, Piensuk, Yamamori, in preparation

classical solutions for the N=2 case

classical EOM : $[A^{\nu}, [A_{\nu}, A_{\mu}]] - \gamma A_{\mu} = 0$

For N=2, we can obtain all the <u>real</u> solutions up to $SO(9,1) \times SU(2)$ sym.



Nontrivial real solutions exist only for $\gamma > 0$.

comments on complex solutions

real solutions are exhausted (up to symmetries) by

$$\begin{array}{c|c} \gamma < 0 & A_{\mu} = 0 \\ \end{array}$$

$$\begin{array}{c|c} \gamma > 0 & A_{\mu} = 0 & A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{8}} \sigma_{\mu} & \mu = 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

$$A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{4}} \sigma_{\mu} & \mu = 1, 2 \\ 0 & \text{otherwise} \end{cases}$$

(trivial solution)

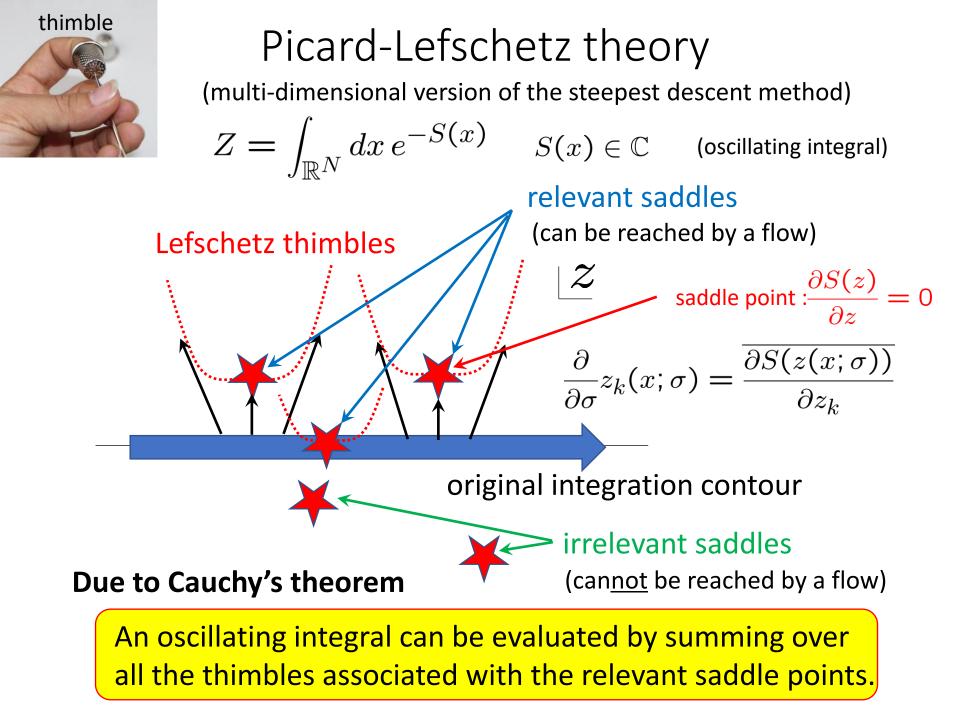
(Pauli solution)

(squashed Pauli solution)

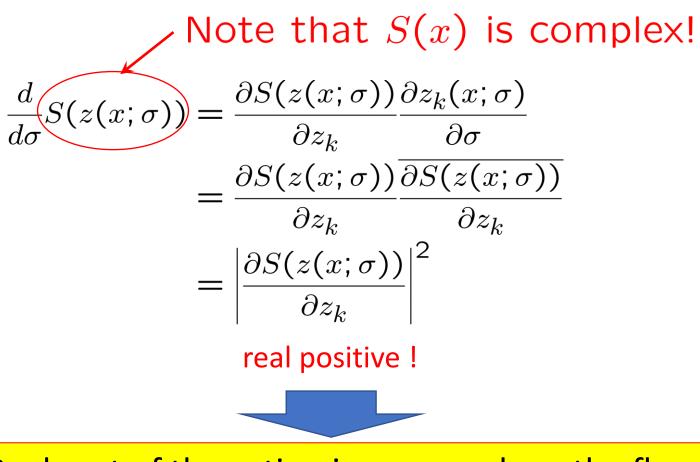
In fact, there are many complex solutions.

e.g.)
$$\gamma < 0$$
 $A_{\mu} = \begin{cases} i\sqrt{\frac{|\gamma|}{8}} \sigma_{\mu} & \mu = 1, 2, 3 \\ 0 & \text{otherwise} \end{cases}$ $A_{\mu} = \begin{cases} i\sqrt{\frac{|\gamma|}{4}} \sigma_{\mu} & \mu = 1, 2 \\ 0 & \text{otherwise} \end{cases}$
 $\gamma > 0 \begin{cases} A_{0} = i\sqrt{\frac{\gamma}{8}} \sigma_{1} \\ A_{1} = \sqrt{\frac{\gamma}{8}} \sigma_{2} \\ A_{2} = \sqrt{\frac{\gamma}{8}} \sigma_{3} \\ A_{i} = 0 & \text{for } i \ge 3 \end{cases}$ $\begin{cases} A_{0} = i\sqrt{\frac{\gamma}{4}} \sigma_{1} \\ A_{1} = \sqrt{\frac{\gamma}{4}} \sigma_{2} \\ A_{i} = 0 & \text{for } i \ge 2 \end{cases}$

These are all **irrelevant** from the viewpoint of the Picard-Lefschetz theory.



an important property of the flow



Real part of the action increases along the flow, while the imaginary part is kept constant. complex saddles are irrelevant in the bosonic model

$$Z = \int dA \, e^{-S[A]} \qquad S[A] = -i(A^4 + \gamma A^2)$$

 $\operatorname{Re} S[A] = 0$ for real configurations

 $\operatorname{Re} S[A] > 0$ required for complex saddles to be relevant

• complex solutions
e.g.)
$$\gamma < 0 \qquad A_{\mu} = \begin{cases} i\sqrt{\frac{|\gamma|}{8}} \sigma_{\mu} & \mu = 1, 2, 3\\ 0 & \text{otherwise} \end{cases} \qquad A_{\mu} = \begin{cases} i\sqrt{\frac{|\gamma|}{4}} \sigma_{\mu} & \mu = 1, 2\\ 0 & \text{otherwise} \end{cases}$$

$$\gamma > 0 \qquad \begin{cases} A_{0} = i\sqrt{\frac{\gamma}{8}} \sigma_{1} \\ A_{1} = \sqrt{\frac{\gamma}{8}} \sigma_{2} \\ A_{2} = \sqrt{\frac{\gamma}{8}} \sigma_{3} \\ A_{i} = 0 & \text{for } i \geq 3 \end{cases} \qquad \begin{cases} A_{0} = i\sqrt{\frac{\gamma}{4}} \sigma_{1} \\ A_{1} = \sqrt{\frac{\gamma}{4}} \sigma_{2} \\ A_{i} = 0 & \text{for } i \geq 2 \end{cases}$$

These are all **irrelevant** from the viewpoint of the Picard-Lefschetz theory.

3. 1/D expansion and MC studies of the cutoff model

Asano, JN, Piensuk, Yamamori, in preparation

$$1/D \text{ expansion}$$

$$A_{\mu} = \sum_{a=1}^{N^{2}-1} A_{\mu}^{a} t^{a} \qquad h_{ab} \sim A_{\mu}^{a} A^{\mu b}$$
Used in the Euclidean model without the mass term
Hotta-J.N.-Tsuchiya ('98)
$$Z = \int dA e^{i(A^{4} + \gamma A^{2})}$$
For the moment, we omit the convergence factors.

$$= \int dh \int dA e^{i(h^{2} + hA^{2} + \gamma A^{2})}$$

$$= \int dh e^{ih^{2} - \frac{D}{2} \log \det K}$$

$$= \int d\tilde{h} e^{-\frac{D}{2} \log \det K}$$

$$\int \tilde{h}_{ab} = \frac{1}{\sqrt{D}} h_{ab}$$

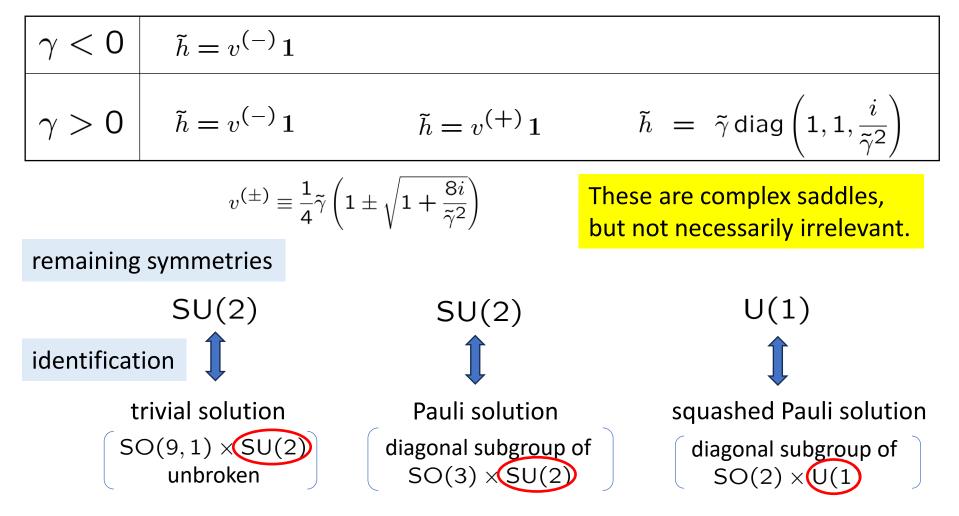
$$\tilde{\gamma} = \frac{1}{\sqrt{D}} \gamma$$
D appears here only as a parameter.

At large D with fixed $\tilde{\gamma}$,

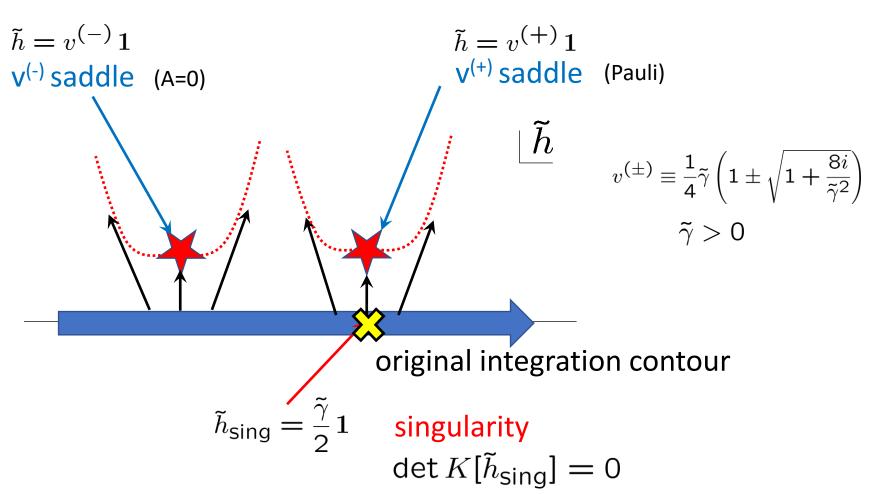
$$\frac{\partial S_{\text{eff}}[\tilde{h}]}{\partial \tilde{h}_{\mu}} = 0 \qquad \Longrightarrow \qquad \tilde{h} + iK[\tilde{h}]^{-1} = 0$$

Large D saddles for N=2 bosonic model Large D SPE : $\tilde{h} + iK[\tilde{h}]^{-1} = 0$

For N=2, we can obtain all the relevant saddle points up to symmetries.

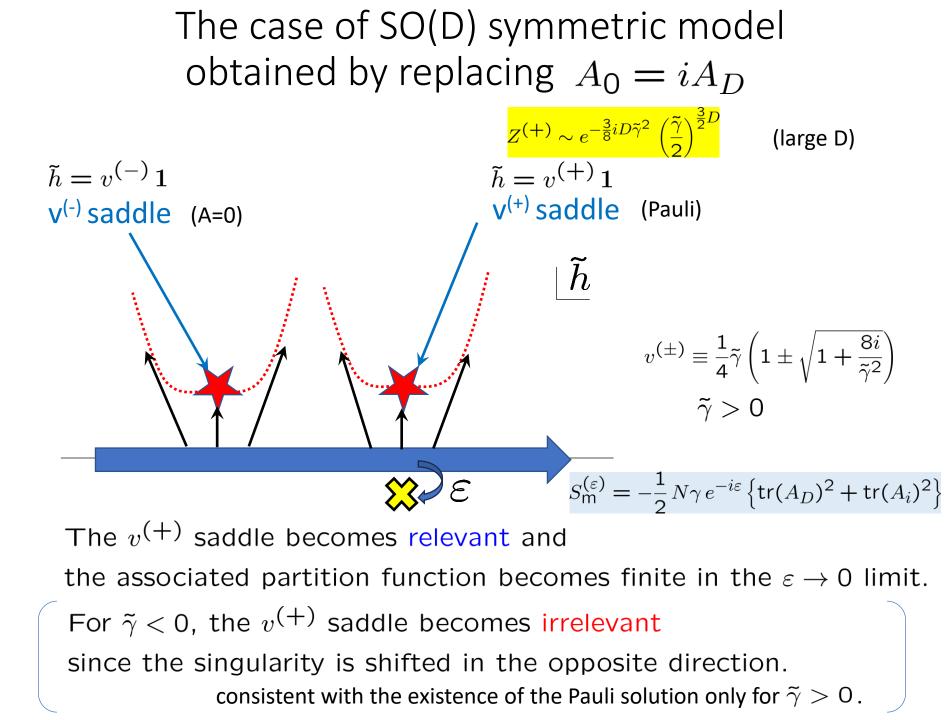


Singularity on the real axis

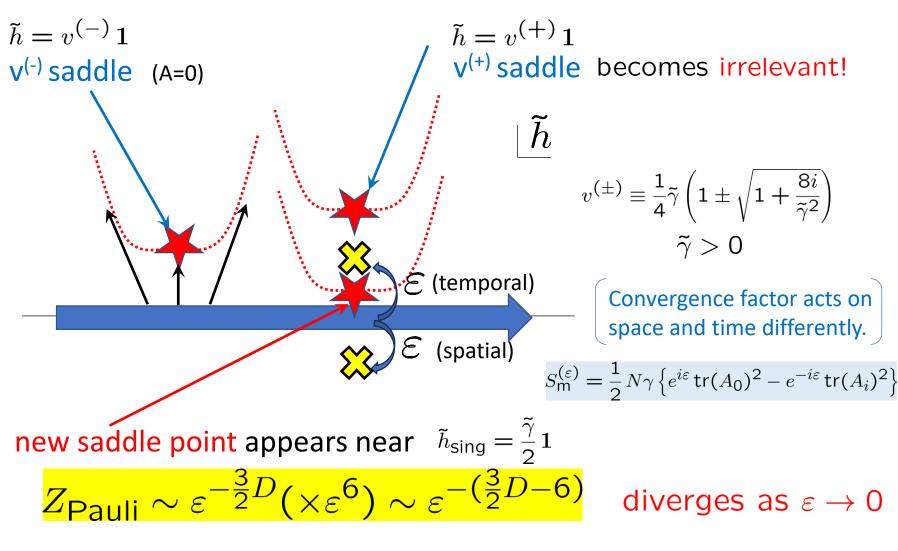


This simply reflects the fact that the partition function is not well defined as it is.

Also true for the SO(D) invariant case !

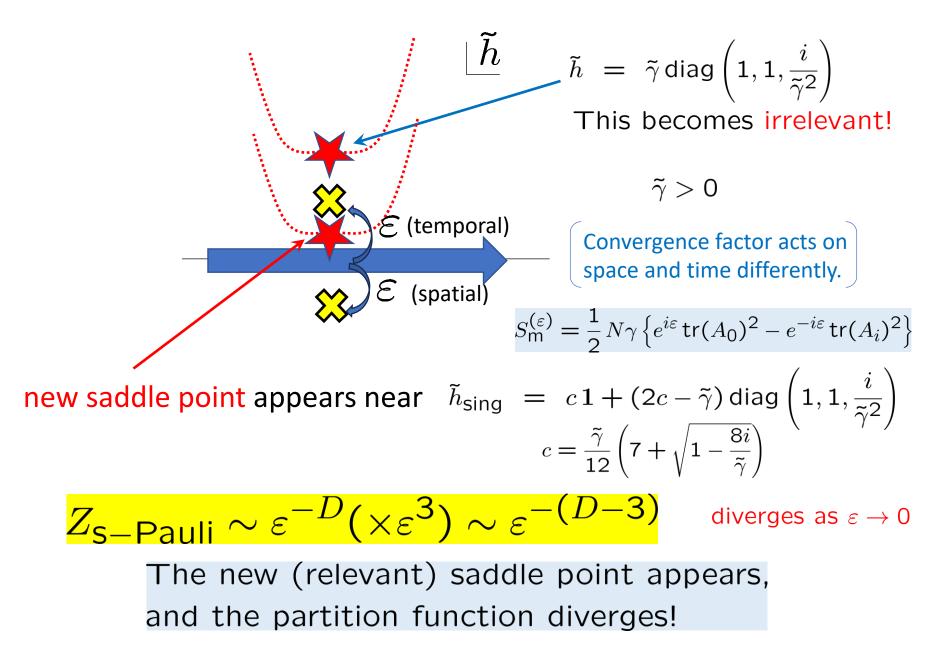


The case of Lorentz symmetric model



The new (relevant) saddle point appears, and the partition function diverges!

Situation with the squashed Pauli



Physical meaning of the divergence

$$Z \sim \varepsilon^{-p}$$

Note: This does not mean that the model is ill defined. E.g., the expectation value $\langle tr(A_{\mu}A^{\mu}) \rangle$ is finite.

Pauli squashed Pauli

$$p \sim \frac{3}{2}D - 6$$

 $p \sim D - 3$

Partition function divegerges faster for Pauli for $D\gtrsim 6$

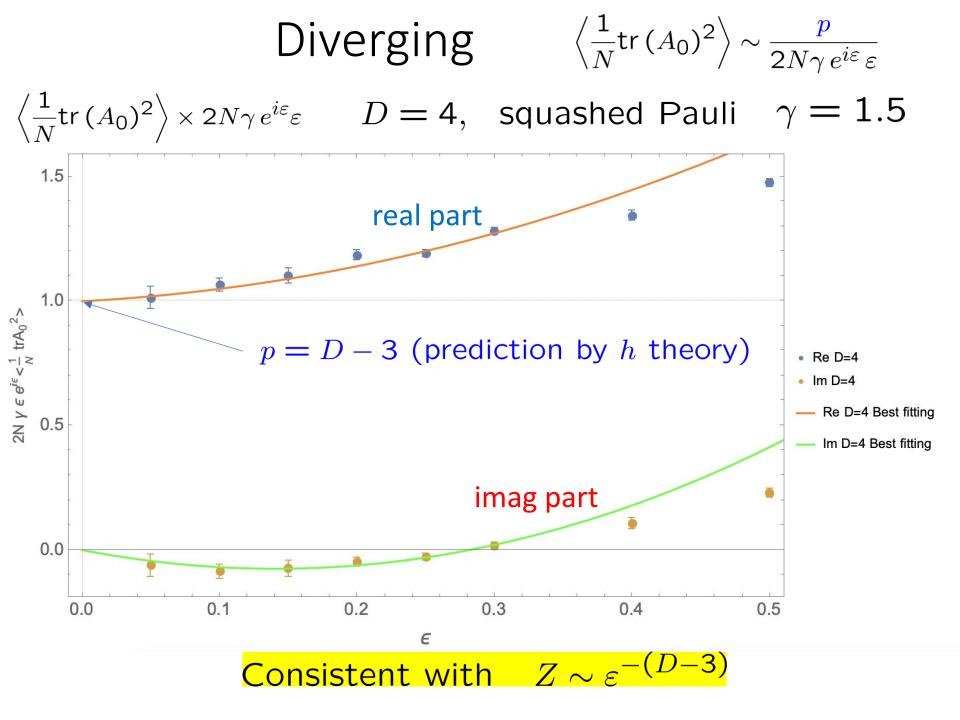
Pauli has 3 nonvanishing internal d.o.f., while squashed Pauli has only 2.

This implies that Pauli thimble dominates in the cutoff model at $\gamma >$ 0 for $D\gtrsim$ 6.

The diverging observables :

$$\left\langle \frac{1}{N} \operatorname{tr} (A_0)^2 \right\rangle \sim -\frac{1}{2N\gamma \, e^{i\varepsilon}} \frac{\partial}{\partial \varepsilon} \log Z \sim \frac{p}{2N\gamma \, e^{i\varepsilon} \, \varepsilon}$$

Boosted configurations dominate the partition function. The cutoff artifact may well remain in the $\varepsilon \rightarrow 0$ limit.



Classicalization for Pauli solution

• The new saddle point approaches $\tilde{h}_{sing} = \frac{\gamma}{2}1$

$$\frac{1}{\sqrt{D}}\frac{1}{N}\langle \operatorname{tr} A_{\mu}A^{\mu}\rangle = \frac{1}{4}\langle \operatorname{tr} \tilde{h}\rangle \sim \frac{3}{8}\tilde{\gamma}$$

• Fluctuations around the saddle point are suppressed at large D.

$$\lim_{D \to \infty} \frac{1}{\sqrt{D}} \frac{1}{N} \langle \operatorname{tr} A_{\mu} A^{\mu} \rangle = \frac{3}{8} \tilde{\gamma} \qquad \text{(classical result)}$$
$$A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{8}} \sigma_{\mu} & \mu = 1, 2, 3\\ 0 & \text{otherwise} \end{cases}$$

Classicalization for Pauli occurs at $D = \infty$.

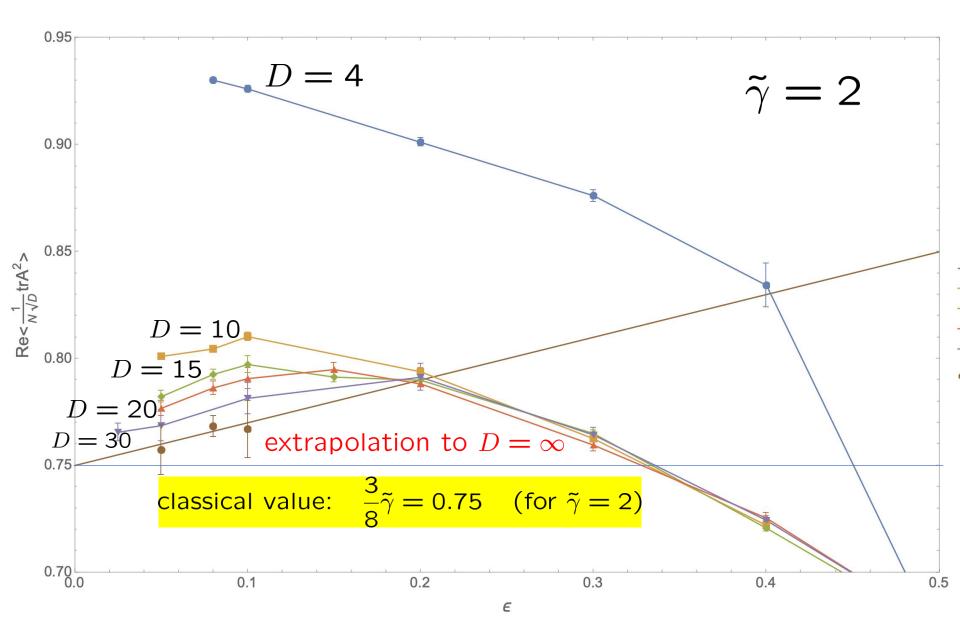
Hessian analysis around boosted Pauli

Eigenvalues of H in the (3D - 1)-dimensional subspace

2	finite	(contributes to quantum corrections)
4	divergent	(suppressed in the $arepsilon o 0$ limit)
(3 <i>D</i> – 7)	zeroes	(corresponding to broken symmetries)

Classicalization occurs in the large D limit.

Classicalization for Pauli at $D=\infty$



Hessian analysis around boosted squashed Pauli

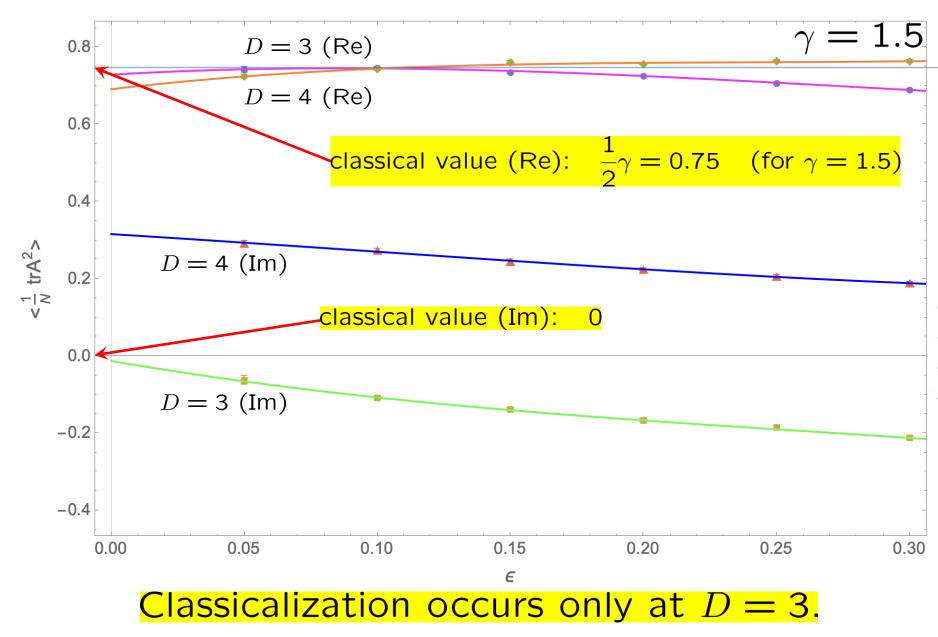
(

Eigenvalues of H in the (3D - 1)-dimensional subspace

(<i>D</i> – 3)	finite	(contributes to quantum corrections)
4	divergent	(suppressed in the $arepsilon o 0$ limit)
(2 <i>D</i> – 2)	zeroes	(corresponding to broken symmetries)

Classicalization for squashed pauli occurs only at D = 3.

Classicalization for squashed Pauli at D = 3



4. MC studies of the "gauge-fixed" model

Chou, JN, Tripathi, in preparation

Saddle points in the gauge-fixed model

$$Z = \int dA \, e^{i(S_{\mathsf{b}} + S_{\mathsf{m}})} \, \Delta_{\mathsf{FP}}[A] \left(\prod_{j=1}^{d} \delta(\mathsf{tr}(A_0 A_j)) \right)$$

 $\Delta_{\mathsf{FP}}[A] = \det \Omega$ $\Omega_{ij} = \operatorname{tr} (A_0)^2 \delta_{ij} + \operatorname{tr} (A_i A_j)$

This represents the gauge fixing condition : tr $(A_0A_j) = 0$ for all j

saddle point equation :

$$[A_{\nu}, [A^{\nu}, A_{\mu}]] = \gamma A_{\mu} + \frac{i}{N} \eta_{\mu\nu} \operatorname{Tr} \left(\Omega^{-1} \frac{\partial \Omega}{\partial A_{\nu}} \right)$$

 $\kappa_i = \frac{2}{N\{ \operatorname{tr} (A_0)^2 + \operatorname{tr} (A_i)^2 \}} , \quad \kappa_0 = \sum_{i=1}^d \kappa_i .$

 $[A_{\nu}, [A^{\nu}, A_{\mu}]] = (\gamma + i\kappa_{\mu})A_{\mu},$

Using the SO(d) symmetry, we can impose : $tr(A_iA_j) = 0$ for $i \neq j$

The effect of gauge-fixing appears here.

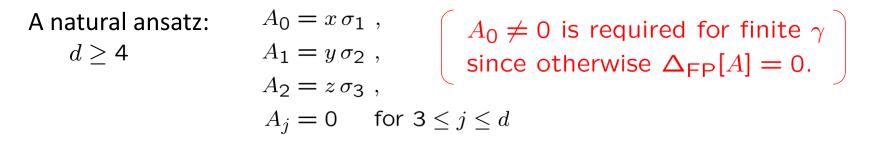
 κ_{μ} has to be determined in a self-consistent manner.

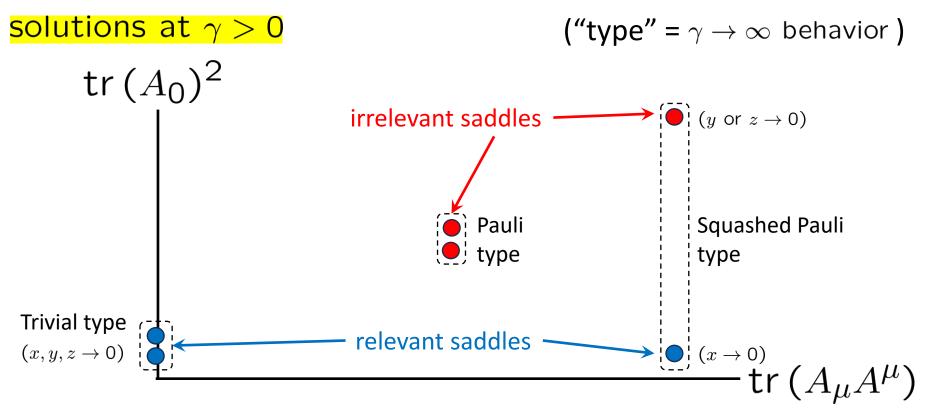
The FP determinant induces a mass-like term in the saddle point eq.

The $\gamma \rightarrow 0$ limit may be smooth!

Ansatz for the saddle points

$$[A_{\nu}, [A^{\nu}, A_{\mu}]] = (\gamma + i\kappa_{\mu})A_{\mu}, \quad \kappa_{i} = \frac{2}{N\{\operatorname{tr}(A_{0})^{2} + \operatorname{tr}(A_{i})^{2}\}}, \quad \kappa_{0} = \sum_{i=1}^{d} \kappa_{i}.$$





The behavior of the solutions at $\,\gamma \to \infty$

For $\gamma \to \infty$, the solutions reduce to those of the gauge-unfixed model

$$\begin{array}{|c|c|c|c|c|} \gamma > 0 & A_{\mu} = 0 & A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{8}} \sigma_{\mu} & \mu = 1, 2, 3\\ 0 & \text{otherwise} \end{cases} & A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{4}} \sigma_{\mu} & \mu = 1, 2\\ 0 & \text{otherwise} \end{cases}$$

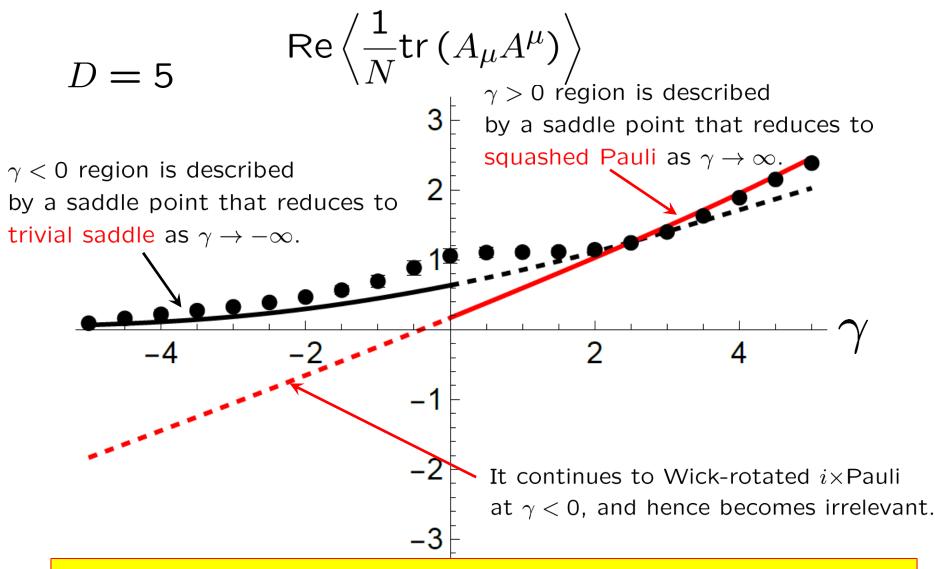
(trivial solution) (Pauli solution) (squashed Pauli solution) Recall, however, that solutions that are obtained by Wick rotation from above are irrelevant from the viewpoint of the Picard-Lefschetz theory.

$$\begin{cases} A_0 = i\sqrt{\frac{\gamma}{8}}\sigma_1 \\ A_1 = \sqrt{\frac{\gamma}{8}}\sigma_2 \\ A_2 = \sqrt{\frac{\gamma}{8}}\sigma_3 \\ A_i = 0 \quad \text{for } i \ge 3 \end{cases} \qquad \begin{cases} A_0 = i\sqrt{\frac{\gamma}{4}}\sigma_1 \\ A_1 = \sqrt{\frac{\gamma}{4}}\sigma_2 \\ A_i = 0 \quad \text{for } i \ge 2 \end{cases}$$

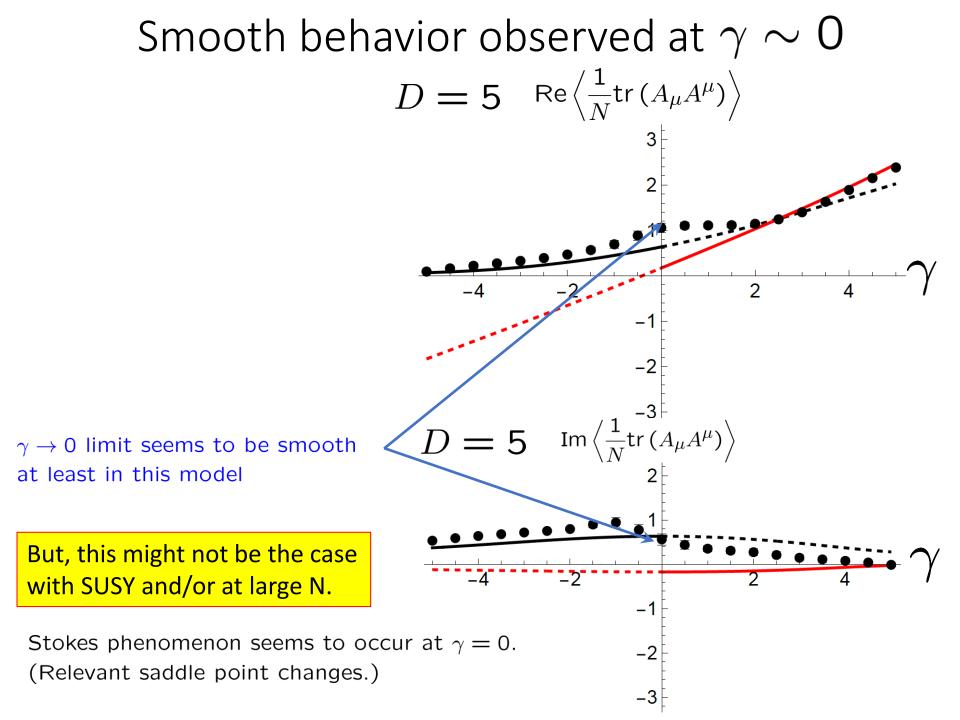
Thus at large γ , relevant saddles should have $A_0 \rightarrow 0$.

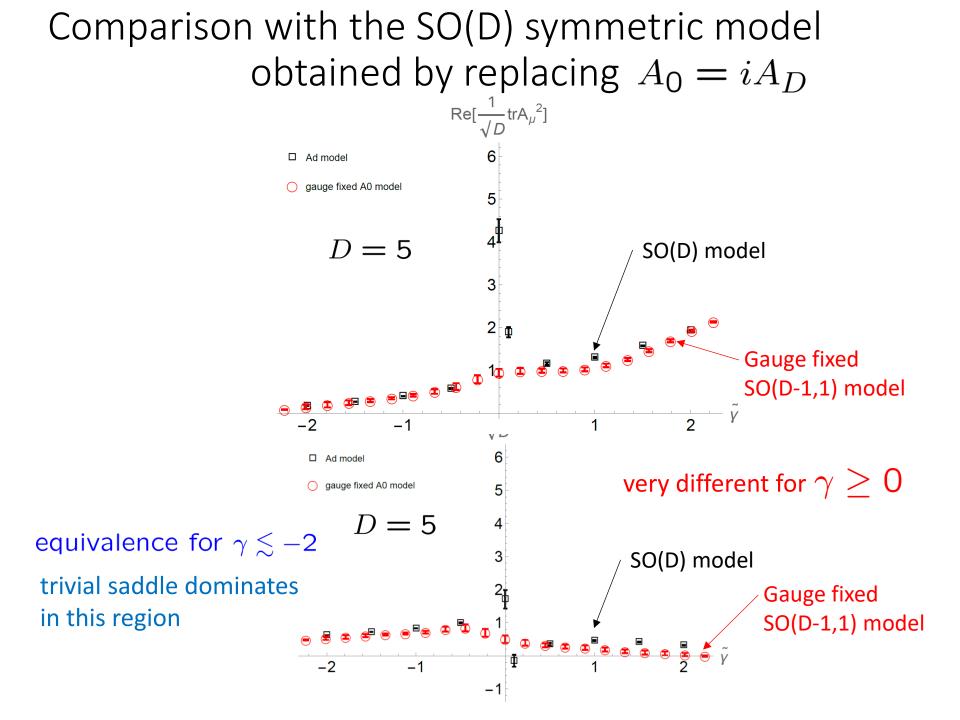
Pauli-type solution cannot be relevant.

Simulation results for the gauge fixed model (by the generalized Lefschetz thimble method)

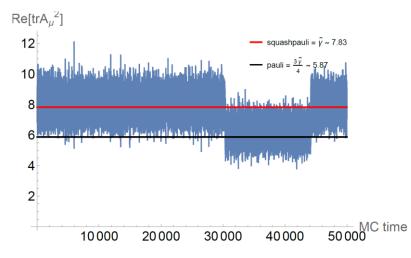


Thus, the dominant saddle point for $\gamma > 0$ is different from the cutoff model !





Ocsillating behavior in the SO(D) model at larger $\, \widetilde{\gamma} \,$

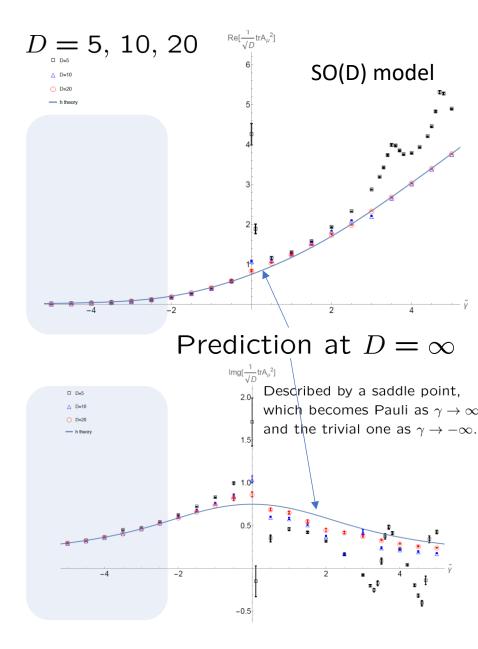


Perturbative calculations around Pauli and squashed Pauli yield:

$$Z_{\text{Pauli}} \simeq \frac{\pi^{\frac{3(D+1)}{2}} \gamma^{\frac{3D}{2} - 6} e^{-\frac{3i}{8}\gamma^2}}{2^{3(D-4)} \Gamma\left(\frac{D}{2}\right) \Gamma\left(\frac{D-1}{2}\right) \Gamma\left(\frac{D-2}{2}\right)}$$
$$Z_{\text{S-Pauli}} \simeq \frac{\pi^{\frac{3D+2}{2}} \gamma^{\frac{D}{2} - 1} e^{-\frac{i}{2}\gamma^2}}{2^{D-\frac{7}{2}} (-i)^{\frac{D-1}{2}} \Gamma\left(\frac{D}{2}\right) \Gamma\left(\frac{D-1}{2}\right)}$$

Due to the relevative phase, interference occurs between P and sP.

At $D = \infty$, Pauli dominates over s-Pauli.



5. Summary and discussions

Summary

- The type IIB matrix model has diverging partition function due to Lorentz symmetry (represented by a noncompact group).
- In the cutoff model, the Pauli solution has more divergent partition function than the squashed Pauli, and hence dominates.

Pauli has 3 nonvanishing internal d.o.f., while squashed Pauli has only 2.

- The cutoff model suffers from a severe artifact due to Lorentz symmetry breaking. (Classicalization at D=∞ Pauli, D=3 sPauli.)
- \bullet We have proposed a new definition of type IIB matrix model without Lorentz symmetry breaking using the gauge fixing. In the gauge-fixed model, Pauli solution cannot appear at large γ .

Gauge fixing is crucial in determining the dominant saddle point.

Future prospects

• What happens in the SUSY case and/or at larger N. Does (3+1)-dimensional expanding space-time emerge in the 1) $N \rightarrow \infty$, 2) $\gamma \rightarrow 0$ limit ?

• SUSY case

1/D expansion cannot be applied (SUSY cannot be respected), but numerical simulation is doable. N=2 case is on-going.

Iarger N

The computational cost of the generalized Lefschetz thimble method grows with N as $O(N^6)$. But we may still do N=4,8,16,...

• SUSY and large N

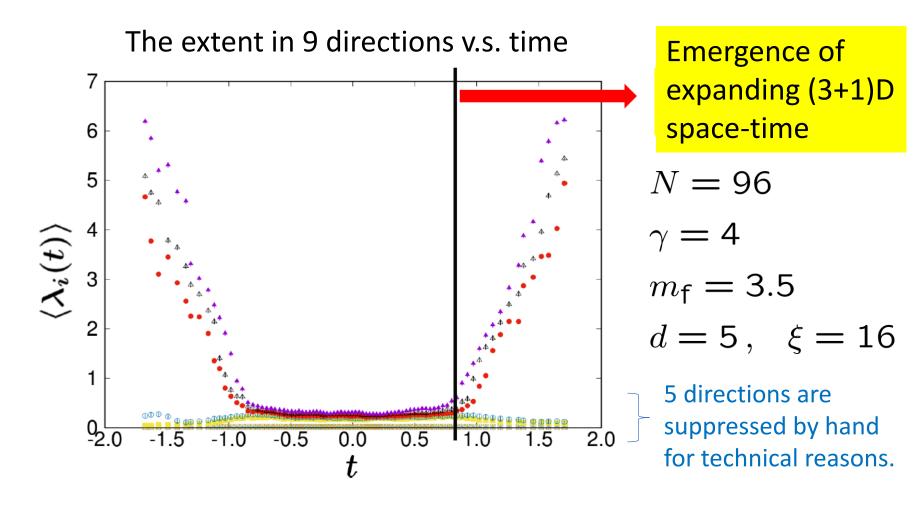
The Pfaffian seems to prefer collapsed configurations, but it becomes zero for configurations with not more than 2 extended directions.

3d space ? complex Langevin method (less flexible but cheaper)

Recent results from complex Langevin simulation

(gauge-unfixed model)

Anagnostopoulos, Azuma, Hatakeyama, Hirasawa, JN, Papadoudis, Tsuchiya, in preparation



The 4th direction becomes small at late times spontaneously !