Numerical evidence for the CP-broken deconfined phase in 4D SU(2) Yang-Mills theory at $\theta = \pi$

松本祥(^{*} collab 畠山 洸太 (京大), 平沢 光昭 (INFN 西村 淳 (KEK, 総研大)

離散的手法による場と時空のダイナミクス2024, 3 Sep. 2024 @東京工業大学

松本祥 (YITP, iTHEMS)

collaboration with

畠山 洸太 (京大), 平沢 光昭 (INFN Milano-Bicocca), 本多 正純 (iTHEMS),

西村 淳 (KEK, 総研大), Atis Yosprakob (新潟大)

Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

日項を含むゲージ理論

☆ トポロジカルθ項 ··· ゲージ理論のトポロジカルな性質を示す非摂動的効果

$$S_{\theta} = -i\theta Q = -\frac{i\theta}{32\pi^2} \int d^4 x \,\epsilon_{\mu\nu\rho\sigma} \mathrm{Tr}$$

- . トポロジカルチャージ Q はコンパクトな空間では整数
- θ パラメーターの周期性: $\theta \sim \theta + 2\pi$
- Qは CP-odd であるため、 $\theta \neq 0$ では一般にCP対称性を破る
- . 中性子の電気双極子モーメントの測定からQCDでは |θ| ≤ 10⁻¹⁰ —> 強いCP問題

$:(F_{\mu\nu}F_{\rho\sigma}) \qquad Z = \int dA \, e^{-S_g + i\theta Q}$

$\theta = \pi における CP 対称性$

• 周期性 $\theta \sim \theta + 2\pi$ により、 $\theta = \pi$ はCP対称性が現れる特別な点

• CP変換:
$$Z = \int dAe^{-S_g + i\theta Q} \to \int dAe^{-S_g - i\theta Q}$$

- ・ $\theta = \pi$ におけるCP対称性が自発的に破れることで、非自明な相構造が現れる
- ・近年、higher form symmetry と 't Hooft anomaly を用いた研究が進展

2次元ゲージ理論での例(1)

<u> N_f -flavor Schwinger模型 (2D QED) at T = 0</u>

. フレーバー数 N_f とフェルミオン質量 m によって $\theta = \pi$ での振る舞いが異なる

• pure U(1)極限 $m \to \infty$ での自由エネルギー: $f \sim \min(\theta + 2\pi n)^2$ (multi-branched)

2次元ゲージ理論での例(2)

<u>2D CP¹ 模型 (nonlinear O(3) sigma 模型) at T = 0</u>

- ・ スピン S の反強磁性Heisenbergスピン鎖の有効理論 <---> $\theta = 2\pi S$
- Haldane's conjecture : [Haldane (1983)] $S = 1, 2, \dots \langle -- \rangle \theta = 0 \langle -- \rangle$ gapped system $S = \frac{1}{2}, \frac{3}{2}, \dots \iff \theta = \pi \iff gapless system$
- . lattice CP^1 模型では coupling β に依存した相図が テンソルネットワークなどで調べられている

<u>4D SU(N) pure Yang-Mills theory</u>

・ Nが小さい場合の相構造はよくわかっていない

large N (holographic analysis)

Anomaly matchingによる相図への制限

- ・ 4D SU(N) YMの相構造は 't Hooft anomaly matchingにより制限できる
- $\theta = \pi$ におけるCP対称性とZ_N 1-form対称性の間に mixed 't Hooft anomaly が存在 •

• SSB of CP
• SSB of $Z_N^{(1)}$
 gapless phase (CFT)

 small N、特に N = 2 の場合の相図に 制限を与えることが可能

[Gaiotto et al. (2017)] [Cordova & Ohmori (2019)]

θ=πにおいて生じる相転移

- 高温領域: CPが回復した非閉じ込め相 (CP symmetric & Z₂ broken) [Gross et al. (1981)] [Weiss (1981)]
 - 十分高温ではinstanton gas近似が有効 $f \sim 1 \cos \theta$
- 低温領域: CPの自発的破れ (CP broken & Z₂???) [Kitano et al. (2021)] subvolume法による数値解析
- ・中間領域では?: <u>anomaly matchingによる制限(gappedであると仮定)</u>
 —> CPとZ2のうち少なくとも1つは破れていなければならない —> CP対称な閉じ込め相は存在しない —> $T_{CP} \ge T_{dec}(\theta = \pi)$

 T_{CP} : $\theta = \pi$ でのCPが回復する温度

 $T_{
m dec}(heta)$:閉じ込め相転移温度

4D SU(2) YMにおいて可能な相図の例

. anomaly matching 条件 —> $T_{CP} \ge T_{dec}$ at $\theta = \pi$

$$T_{\rm CP} = T_{\rm dec}(\theta = \pi)$$

Large-N result by holographic analysis

[Bigazzi et al. (2015)]

$$T_{\rm CP} > T_{\rm dec}(\theta = \pi)$$

SU(2) YM with softly broken SUSY [Chenet al. (2020)]

SU(2)において実現するのはどちらの相図か?

Short summary

- ・ 4D SU(N) YMの $\theta = \pi$ におけるCP対称性と閉じ込め相転移の関係について、 't Hooft anomaly matchingによる制限が与えられている
- θ項に由来する符号問題のため、直接的なモンテカルロ計算は難しい
- ・本研究ではimaginary θ を用いた解析により、CP対称性の温度変化を調べた
- . その結果、 $T_{CP} > T_{dec}(\theta = \pi)$ を示唆する結果が得られた

—> large Nとは異なるが、anomaly matchingとは無矛盾

Simulation results

- 1. Introduction
- 2. Method
- 3. Result
- 4. Summary

Simulation results

1. Introduction

2. Method

3. Result

4. Summary

$\theta = \pi$ におけるCP対称性の破れ

- ・トポロジカルチャージ期待値は CP-odd なので、 CPのオーダーパラメーターとなる
- $\langle Q \rangle_{\pi-} := \lim_{\epsilon \to 0} \langle Q \rangle_{\theta=\pi-\epsilon} \begin{cases} \neq 0 & : \text{CP broken} \\ = 0 & : \text{CP restored} \end{cases}$
- . $\langle Q \rangle_{\pi}$ の温度依存性から T_{CP} を決定
- ・しかし、 $\theta = \pi$ では符号問題が強いため、 直接モンテカルロ法で計算することは困難 —> imaginary θ 模型を用いた解析

2DU(N)の場合

・解析計算が可能な2次元の場合の例

limits	$ heta \in \mathbb{R}$	$ heta = i ilde{ heta} \left(ilde{ heta} \in \mathbb{R} ight)$	$CP \text{ at } \theta = \pi$
$\frac{V}{\beta} \ll 1$	$i\sin heta$	$\sinh ilde{ heta}$	restored
$\frac{V}{\beta} \gg 1$	i heta	$ ilde{ heta}$	broken

cf.) 4D SU(N) YMの高温領域 —> instanton gas近似 $\langle Q \rangle_{\theta} \propto i \sin \theta$ (CP resotred)

imaginary θ

 $-V \ll 1$

 $-0.8 \quad -0.6 \quad -0.4 \quad -0.2 \quad 0$

 $0.2 \quad 0.4$

 $\tilde{\theta}/\pi$ (imaginary)

 $0.6 \quad 0.8$

 $- V \gg 1$

3

-3

-4--1

 $-\{Q\}\}/\chi_0 V$

の解析接続

• imaginary $\theta \land o$ で置き換え $\theta \in \mathbb{R} \rightarrow i\tilde{\theta} \in i\mathbb{R}$ により、作用は実数となる

 $S = S_g + i\theta Q \implies S = S_g - \tilde{\theta} Q$

- ・ $\tilde{\theta}$ は(反)インスタントンの化学ポテンシャルのように働く
- key idea :
 - 解析接続により real θ 領域での $\langle Q \rangle_{\theta}$ を推定する

imaginary θ 領域でトポロジカルチャージ期待値 $\langle Q \rangle_{\tilde{\theta}}$ をモンテカルロ法で計算し、

格子上でのトポロジカルチャージ

・ Naiveな離散化 (cloverleaf)

$$Q = -\frac{1}{32\pi^2} \sum_{n} \frac{1}{2^4} \sum_{\mu,\nu,\rho,\sigma=\pm 1}^{\pm 4} \tilde{\epsilon}_{\mu\nu\rho\sigma} \operatorname{Tr} \left(\bar{P}_{n}^{\mu\nu} \bar{P}_{n}^{\rho\sigma} \right)$$
$$\bar{P}_{n}^{\mu\nu} := P_{n}^{\mu\nu} - P_{n}^{-\mu\nu} - P_{n}^{\mu-\nu} + P_{n}^{-\mu-\nu}$$

 ・有限格子サイズでは整数値にならず、「トポロジカル」ではない
 $\longrightarrow \theta = \pi$ におけるCP対称性も現れない

cf.) 2次元の場合には格子上でも整数となる

[Di Vecchia et al. (1981)]

る定義が存在:
$$Q = -\frac{l}{2\pi} \sum_{n} \operatorname{Tr} \log P_{n}$$

Stout smearing

- ・ UV fluctuationを抑制して、トポロジカルな性質を回復させる
- . ゲージ配位 $U_{n,\mu}$ を N_{ρ} 回アップデートして、smearされた配位 $\tilde{U}_{n,\mu}$ を得る $U = U^{(0)} \to U^{(1)} \to \cdots \to U^{(N_{\rho})} = \tilde{U}$
- ・トポロジカルチャージはsmearされた配位で計算する: $Q[\tilde{U}]$
 - $U_{n,\mu}^{(k+1)} = e^{iY_{n,\mu}} U_{n,\mu}^{(k)} \qquad iY_{n,\mu} = -\frac{1}{2} \left(J_{n,\mu} \frac{1}{2} \operatorname{Tr} \left[J_{n,\mu} \right] \right)$ $\nu(\neq \mu)$

[Morningstar & Peardon (2004)]

Stout smearing + HMC

- . 作用 $S = S_{g}[U] \tilde{\theta}Q[\tilde{U}]$ に従ってHMCで配位生成を行う
- θ 項に含まれる相互作用は \tilde{U} についてlocalだが、U についてはnon-local

, HMCの各ステップで
$$F_{n,\mu} = \frac{\partial Q[\tilde{U}]}{\partial U_{n,\mu}}$$
を逐

• $F_{n,\mu}^{(k)} := \frac{\partial Q[U]}{\partial U_{n,\mu}^{(k)}}$ についての chain rule $F_{n,\mu}^{(k)}$

次的に計算する

$$Q = \sum_{m,\nu} \frac{\partial U_{m,\nu}^{(k+1)}}{\partial U_{n,\mu}^{(k)}} F_{m,\nu}^{(k+1)}$$
を用いる

 $\tilde{F} = F^{(N_{\rho})} \rightarrow F^{(N_{\rho}-1)} \rightarrow \cdots \rightarrow F^{(0)} = F$ (back propagation) cf.) \tilde{F} の計算は比較的容易

複素Langevin法について

- real θで生じる符号問題を回避するため、複素Langevin法(CLM)も試みた
- stout smearing と back propagation は holomorphicな操作であるため、 CLMにおいても実装可能
- しかし、トポロジーの変化によって 強いドリフトが生じ、収束条件が満たされない
- ・2次元の場合は開放端を導入することで この問題を回避できたが、4次元の場合、 開放端があるとsmearingによって非自明なトポロジーが残らない

Simulation results

- 1. Introduction
- 2. Method
- **3. Result**
- 4. Summary

Stout smearingの効果

- . ステップ幅 ρ とステップ数 N_{ρ} を調整し、
- トポロジカルチャージが 150 離散的な値をとるようにする。 125
- ・ 以降の結果では 75 50 $\rho = 0.09$ と $N_{\rho} = 40$ に固定 25

- 250 cf.) 計算コスト: $O(VN_{\rho})$ 200
 - 100
 - 50

のリスケール

- $\cdot \langle Q[\tilde{U}] \rangle$ の分布のピーク位置は整数からずれている
- ・整数に近づくように測定値をリスケール $Q \rightarrow wQ$
- 同時に θ も リスケール $\theta \rightarrow \theta/w$
- ・リスケールした θ は近似的に2 π 周期性を持つ
- . $w は \exists z \land B$ $C(w) = \left\langle 1 \cos\left(2\pi w Q\right) \right\rangle$ を 最小化するように決定 —> w ~ 1.2

 $\langle Q[\tilde{U}] \rangle$ の確率分布

Imaginary θでの計算

- . $L_t = 5$ に固定し、 $L_s = 16, 20, 24$ で計算した結果を用いて、
 - トポロジカルチャージ期待値 $\langle Q[\tilde{U}] \rangle_{\tilde{\theta}}$ を $L_s \to \infty$ に $a/V_s + b$ で線形外挿

Fitting ansatzの設定

 $L_{g} \to \infty$ 外挿した $\langle Q[\tilde{U}] \rangle_{\tilde{\theta}}$ を2通りのansatzに対してfittingする

• 多項式展開: $g(\tilde{\theta}) = b_1 \tilde{\theta} - b_3 \tilde{\theta}^3 + b_5 \tilde{\theta}^5$

• sinh展開: $h(\tilde{\theta}) = a_1 \sinh(\tilde{\theta}) + a_3 \sinh(3\tilde{\theta}) + a_5 \sinh(5\tilde{\theta})$ $< \to h(\theta) = a_1 \sin(\theta) + a_3 \sin(3\theta) + a_5 \sin(5\theta)$: instanton gas + 補正

トポロジカル感受率
$$\chi_0 = \frac{-i}{V} \frac{\partial \langle Q \rangle}{\partial \theta} \bigg|_{\theta=0} = \frac{1}{V} \frac{\partial \langle Q \rangle}{\partial \tilde{\theta}} \bigg|_{\tilde{\theta}=0}$$
を用いてパラメーターを1つ減らす

 $a_1 + 2a_2 + 3a_3 = \chi_0$ $v_1 - \chi_0$

- <--> $g(\theta) = b_1\theta + b_3\theta^3 + b_5\theta^5$: Gaussian + 補正 (motivated by 2D U(N) & large N)

θ 依存性の fitting

• $T/T_c = 0.9$ (低温側)

多項式fitが有効 ---> Gaussian like

. $T/T_c = 1.2$ (高温側) >°° 0.002 >° ∧ 0.0015 sinh fitが有効 Q --> instanton gas like

 T_c : $\theta = 0$ での閉じ込め温度

25

解析接続の結果

多項式展開:

 $g(\theta) = b_1\theta + b_3\theta^3 + b_5\theta^5$

低温でCPが破れていることを示唆

・ sin展開: (定義より $h(\pi) = 0$) $h(\theta) = a_1 \sin(\theta) + a_3 \sin(3\theta) + a_5 \sin(5\theta)$ $>^{\rm s}$

高温側でよくfitできるのは、 instanton gas近似と無矛盾 ---> CPの回復を示唆

> / V_s

Q

Ø

$\theta = \pi$ におけるCP対称性の温度変化

- .多項式展開による解析接続で求めた $\langle Q[ilde{U}]
 angle_{ heta}$ の温度変化を見て、 CP対称性の破れと回復を判定
- での閉じ込め相転移温度 T_c 付近で $\langle Q[\tilde{U}] \rangle_{\theta=\pi} = 0$ となる
- **.** CPが回復する温度 T_{CP} の範囲:

$$0.99 \lesssim \frac{T_{\rm CP}}{T_c} \lesssim 1.0$$

0.005

0.004

°√(0) ₩ 0.002

0.001

0.000

0.0020

° 0.0015 √(0) <u>6</u> 0.0010

0.0005

0.0000

閉じ込め温度の日依存性

. imaginary θ におけるPolyakov loop感受率から閉じ込め温度 $T_{dec}(\tilde{\theta})$ を求め、 解析接続によりreal θ 側での振る舞いを推定: $\frac{T_{\text{dec}}}{T_{c}}(\theta = \pi) \lesssim 0.91$

cf.) SU(3)の場合 $\frac{T_{\rm dec}(\theta)}{T_{\rm dec}(0)} \approx 1 - 0.0178 \ \theta^2 + \cdots$

[D'Elia & Negro (2013)] [Otake & Yamada (2022)]

$$T_{\rm dec}(\theta = \pi) \lesssim 0.91 \ T_{\rm c}$$

 $a_2 = 0.0303$ $b_2 = 0.0367, b_4 = -0.0019$ $c_1 = -0.045$

CPの回復と閉じ込め温度の関係

CPが回復する温度: $0.99 \leq \frac{T_{CP}}{T_c} \leq 1.0$

・閉じ込め温度: $\frac{T_{\text{dec}}}{T_{e}}(\theta = \pi) \lesssim 0.91$

 $\longrightarrow T_{CP} > T_{dec}(\theta = \pi)$

• CPが破れた領域が非閉じ込め相にも存在

Simulation results

- 1. Introduction
- 2. Method
- 3. Result
- 4. Summary

まとめ

- 解析接続を用いて $\theta = \pi$ での温度依存性を推定
- ・ stout smearingを用いてゲージ配位のトポロジカルな性質を回復
- . $\langle Q[\tilde{U}] \rangle_{\theta=\pi} = 0$ となる温度 —> 0.99 $\leq T_{CP}/T_c \leq 1.0$
- . 閉じ込め相転移温度 —> $T_{dec}(\theta = \pi) \leq 0.91 T_{c}$
- . CP-broken deconfined phase を示唆 $T_{CP} > T_{dec}(\theta = \pi)$
- . large Nの場合 $T_{CP} = T_{dec}(\theta = \pi)$ とは異なるが、anomaly matchingとは無矛盾

・トポロジカルチャージ期待値の θ 依存性を符号問題のないimaginary θ 領域で計算し、

- 連続極限
- improved actionを用いてsmearing step数を減らす
- smearingによるartifactを取り除く

- SU(3)の場合での検証
- N≥3では閉じ込め相転移が1次相転移になる
- . Nを大きくすると、どこかでlarge Nと同様 $T_{CP} = T_{dec}(\theta = \pi)$ になると期待